595
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Breakdown of Kolmogorov's first similarity hypothesis in grid turbulence

, , &
Pages 596-610 | Received 07 Jan 2014, Accepted 06 Apr 2014, Published online: 12 Jun 2014

References

  • A. Kolmogorov, On the degeneration (decay) of isotropic turbulence in an incompressible viscous fluid, Dokl. Akad. Nauk SSSR 31 (1941), pp. 538–540.
  • S.G. Saddoughi and S.V. Veeravalli, Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech. 268 (1994), pp. 333–372.
  • L. Djenidi and R.A. Antonia, A spectral chart method for estimating the mean kinetic energy dissipation rate, Exp. Fluids 53 (2012) pp. 1005–1013.
  • N.N. Mansour and A.A. Wray, Decay of isotropic turbulence at low Reynolds number, Phys. Fluids 6 (1994), pp. 808–813.
  • U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier– Stokes equations, Phys. Rev. Lett. 56 (1986), pp. 1505–1508.
  • L. Djenidi, Lattice Boltzmann simulation of grid-generated turbulence, J. Fluid Mech. 552 (2006), pp. 13–35.
  • L. Djenidi, Study of the structure of a turbulent crossbar near-wake by means of Lattice Boltzmann, Phys. Rev. E 77 (2008), 036310.
  • S. Chen and G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1998), pp. 329–364.
  • S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2001.
  • L. Djenidi, S. Tardu, and R.A. Antonia, Relation between temporal and spatial averages in grid turbulence, J. Fluid Mech. 730 (2013), pp. 593–606.
  • S. Hou, J. Sterlin, S. Chen, and G.D. Doolen, A lattice Boltzmann subgrid model for high Reynolds number flows, in Field Institute Communications. Pattern Formation and Lattice Gas Automata, Vol. 6, A.T. Lawniczak and R. Kapral, eds., American Mathematical Society, Ontario, pp. 151–166. Available at arXiv:comp-gas/9401004v1.
  • L. Djenidi and S. Tardu, On the anisotropy of a low-Reynolds-number grid turbulence, J. Fluid Mech. 702 (2012), pp. 332–353.
  • L. Danaila, R.A. Antonia, and P. Burattini, Progress in studying small-scale turbulence using ‘exact’ two-point equations, New J. Phys. 6 (2004), p. 128.
  • S.C. Ling and T.T. Huang, Decay of weak turbulence, Phys. Fluids 13 (1970), pp. 2912–2924.
  • R.A. Antonia, R.J. Smalley, T. Zhou, F. Anselmet, and L. Danaila, Similarity of energy structure functions in decaying homogeneous isotropic turbulence, J. Fluid Mech. 487 (2003), pp. 245–269.
  • W.K. George, The decay of homogeneous isotropic turbulence, Phys. Fluids 4 (1992), pp. 1492–1509.
  • R.A. Antonia, L. Djenidi, and L. Danaila, Collapse of the turbulent dissipative range on Kolmogorov scales. Phys. Fluids, 26 (2014) 045105. Available at http://dx.doi.org/10.1063/1.4869305
  • P. Lavoie, P. Burattini, L. Djenidi, and R.A. Antonia Effect of initial conditions on decaying grid turbulence at low Rλ, Exp. Fluids 39 (2005) pp. 865–874.
  • G.K. Batchelor and A.A. Townsend, Decay of isotropic turbulence in the final period, Proc. R. Soc. A 194 (1948), pp. 527–543.
  • C.C. Ling, Remarks on the Spectrum of Turbulence. in Non-linear Problems in Mechanics of Continua, Proceedings of 1st Symposia in Applied Mathematics, Rhode Island, 1949, pp. 81–86.
  • L. Danaila and R.A. Antonia, Spectrum of a passive scalar in moderate Reynolds number homogeneous isotropic turbulence, Phys. Fluids 21 (2009), pp. 111702–111706.
  • G.K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity, J. Fluid Mech. 5 (1959), pp. 113–133.
  • G. Comte-Bellot and S. Corrsin, Simple Eulerian time correlation of full- and narrow band velocity signals in grid generated, ‘isotropic’ turbulence, J. Fluid Mech. 48 (1971), pp. 273–337.
  • L. Mydlarski and Z. Warhaft, On the onset of high-Reynolds-number grid-generated wind tunnel turbulence, J. Fluid Mech. 320 (1996), pp. 331–368.
  • A. Kolmogorov, The local structure of turbulence in an incompressible viscous fluids for very large Reynolds numbers, Dokl. Akad. Nauk 30 (1941), pp. 301–305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.