395
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Characterisation of a high Reynolds number boundary layer subject to pressure gradient and separation

, , &
Pages 473-515 | Received 23 Jan 2014, Accepted 07 Apr 2014, Published online: 02 Jun 2014

References

  • R.L. Simpson, Turbulent boundary layer separation, Ann. Rev. Fluid Mech. 21 (1989), pp. 205–234.
  • S. Song, D.B. DeGraaff, and J.K. Eaton, Experimental study of a separating, reattaching, and redeveloping flow over a smoothly contoured ramp, Int. J. Heat Fluid Flow 21 (2000), pp. 512–519.
  • F.R. Menter, A comparison of some recent eddy-viscosity turbulence models, J. Fluids Eng. 118 (1996), pp. 514–519.
  • B. Wasistho and K.D. Squires, Prediction of turbulent separation over a backward facing smooth ramp, J. Turbul. 6 (2005), p. 1.
  • X. Wu and K.D. Squires, Numerical investigation of the turbulent boundary layer over a bump, J. Fluid Mech. 362 (1998), pp. 229–271.
  • D.R. Webster, D.B. DeGraaff, and J.K. Eaton, Turbulence characteristics of a boundary layer on a two-dimensional bump, J. Fluid Mech. 320 (1996), pp. 53–69.
  • D.K. Chapman, Computational aerodynamics development and outlook, AIAA J. 17 (1979), pp. 1293–1313.
  • U. Piomelli, Large-eddy simulation: Achievements and challenges, Prog. Aerosp. Sci. 35 (1999), pp. 335–362.
  • K. Akselvoll and P. Moin, Large eddy simulation of turbulent confined coannular jets and turbulent flow over a backward facing step, Tech. Rep. TF-63, Department of Mechanical Engineering, Stanford University, 1995.
  • P. Moin, Large eddy simulation of backward-facing step flow with application to coaxial jet combustors, Department of Mechanical Engineering, Stanford University, 1995.
  • A. Keating, U. Piomelli, K. Bremhorst, and S. Nĕsić, Large-eddy simulation of heat transfer downstream of a backward-facing step, J. Turbul. 5 (2004), pp. 1–28.
  • W.K. George, Recent advancements toward the understanding of turbulent boundary layers, AIAA J. 44 (2006), pp. 2435–2449.
  • W.K. George, Is there a universal log law for turbulent wall-bounded flows? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365 (2007), pp. 789–806.
  • A. Bernard, J.M. Foucaut, P. Dupont, and M. Stanislas, Decelerating boundary layer: A new scaling and mixing length model, AIAA J. 41 (2003), pp. 248–255.
  • C.D. Aubertine and J.K. Eaton, Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient, J. Fluid Mech. 532 (2005), pp. 345–364.
  • K.P. Angele and B. Muhammad-Klingmann, PIV measurements in a weakly separating and reattaching turbulent boundary layer, Eur. J. Mech. B/Fluids 25 (2006), pp. 204–222.
  • S.A. Dixit and O.N. Ramesh, Determination of skin friction in strong pressure-gradient equilibrium and near-equilibrium turbulent boundary layers, Exp. Fluids 47 (2009), pp. 1045–1058.
  • J.H. Lee and H.J. Sung, Structures in turbulent boundary layers subjected to adverse pressure gradients, J. Fluid Mech. 639 (2009), pp. 101–131.
  • P.A. Krogstad and P.E. Skåre, Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer, Phys. Fluids 7 (1995), pp. 2014–2024.
  • P.A. Krogstad and J.H. Kaspersen, Structure inclination angle in a turbulent adverse pressure gradient boundary layer, J. Fluids Eng. 124 (2002), pp. 1025–1033.
  • P. Dengel and H. Fernholz, An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation, J. Fluid Mech. 212 (1990), pp. 615–636.
  • G.L. Mellor and D.M. Gibson, Equilibrium turbulent boundary layers, J. Fluid Mech. 24 (1966), pp. 225–253.
  • P. Bradshaw, The response of a constant-pressure turbulent boundary layer to the sudden application of an adverse pressure gradient, R. & M. No. 3575, Her Majesty’s Stationery Office, London, 1967.
  • K.P. Angele, Experimental studies of turbulent boundary layer separation and control, Department of Mechanics, Royal Institute of Technology, Stockholm, 2003.
  • R.L. Simpson, J.H. Strickland, and P.W. Barr, Features of a separating turbulent boundary layer in the vicinity of separation, J. Fluid Mech. 79 (1977), pp. 553–594.
  • R.L. Simpson, Y.T. Chew, and B.G. Shivaprasad, The structure of a separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses, J. Fluid Mech. 113 (1981), pp. 23–51.
  • R.L. Simpson, Y.T. Chew, and B.G. Shivaprasad, The structure of a separating turbulent boundary layer. Part 2. Higher-order turbulence results, J. Fluid Mech. 113 (1981), pp. 53–73.
  • B. Chehroudi and R.L. Simpson, Space-time results for a separating turbulent boundary layer using a rapidly scanning laser anemometer, J. Fluid Mech. 160 (1985), pp. 77–92.
  • S. Song and J.K. Eaton, Flow structures of a separating, reattaching, and recovering boundary layer for a large range of Reynolds number, Exp. Fluids 36 (2004), pp. 642–653.
  • J. Carlier and M. Stanislas, Experimental study of eddy structures in a turbulent boundary layer using particule image velocimetry., J. Fluid Mech. 535 (2005), pp. 143–188.
  • Gardarin,Contrôle par générateur de vortex d’un écoulement turbulent décollé, Ecole Polytechnique, 2009.
  • W.J. Dixon and F.J. Massey, Introduction to Statistical Analysis, MacGraw Hill, New York, 1957.
  • C. Cuvier, Active control of a separated turbulent boundary layer in adverse pressure gradient, Ecole Centrale de Lille, 2012.
  • J.C. Klewicki and R.E. Falco, On accurately measuring statistics associated with small-scales structure in turbulent boundary layers using hot-wire probes, J. Fluid Mech. 219 (1990), pp. 119–142.
  • P.C. Valente and J.C. Vassilicos, Comment on “Dissipation and decay of fractal-generated turbulence”, Phys. Fluids 23 (2011), pp. 1–2.
  • J. Kostas, J.M. Foucaut, and M. Stanislas, Application of Double SPIV on the Near Wall Turbulence Structure of an Adverse Pressure Gradient Turbulent Boundary Layer, Proceedings of the 6th International Symposium on PIV, Pasadena, CA, 2005.
  • S. Herpin, C.Y. Wong, M. Stanislas, and J. Soria, Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range, Exp. Fluids 45 (2008), pp. 745–763.
  • J. Foucaut, B. Milliat, N. Perenne, and M. Stanislas, Characterisation of Different PIV Algorithms Using the EUROPIV Synthetic Image Generator and Real Images from a Turbulent Boundary Layer, Proceedings of the EUROPIV2 Workshop, Zaragoza, Spain, 2003.
  • J. Carlier, Etude des structures cohérentes de la turbulence de paroi grand nombre de Reynolds par vélocimétrie par images de particules, Université des sciences et technologies de Lille, 2001.
  • H. Schlichting and K. Gersten, Boundary Layer Theory, McGraw-Hill, New York, 1960.
  • H. Ludwieg and W. Tillmann, Investigation of the wall shearing stress in turbulent boundary layer, Tech. Rep. NACA TM 1285, NACA, Washington, DC, 1949.
  • C.B. Millikan, A Critical Discussion of Turbulent Flows in Channels and Circular Tubes, Proceedings of the 5th International Congress for Applied Mechanics, Harvard University and the Massachusetts Institute of Technology, Cambridge, MA, 1938.
  • G.I. Taylor, Statistical theory of turbulence, Proc. R. Soc. Lond. A 151 (1935), pp. 421–444.
  • M. Skote and D.S. Henningson, Direct numerical simulation of separating turbulent boundary layers, J. Fluid Mech. 471 (2002), pp. 107–136.
  • T. Knopp, D. Schanz, A. Schröder, M. Dumitra, C. Cierpka, R. Hain, and C.J. Kähler, Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at Reθ = 10000, Flow Turbul. Combust. 92 (2013), pp. 451–471.
  • L. Castillo and W.K. George, Similarity analysis for boundary layer with pressure gradient: Outer flow, AIAA J. 39 (2001), pp. 41–47.
  • V. Baskaran, A.J. Smits, and P.N. Joubert, A turbulent flow over a curved hill. Part 1. Growth of an internal boundary layer, J. Fluid Mech. 182 (1987), pp. 47–83.
  • H.H. Fernholz and P.J. Finley, The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data, Prog. Aerosp. Sci. 32 (1996), pp. 245–311.
  • O. Lögdberg, K. Angele, and H. Alfredsson, On the robustness of separation control by streamwise vortices, Eur. J. Mech. B/Fluids 29 (2010), pp. 9–17.
  • J.C. Lin, Control of Turbulent Boundary Layer Separation Using Micro-Vortex Generators, Proceedings of the 30th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Reston, VA, 1999.
  • G.V. Selby, J.C. Lin, and F.G. Howard, Control of low-speed turbulent separated flow using jet vortex generators, Exp. Fluids 12 (1992), pp. 394–400.
  • S. Song and J.K. Eaton, Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery, Exp. Fluids 36 (2004), pp. 246–258.
  • R.J. Adrian, C.D. Meinhart, and C.D. Tomkins, Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech. 422 (2000), pp. 1–54.
  • N. Hutchins and I. Marusic, Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech. 579 (2007), pp. 1–28.
  • D.B. DeGraaff and J.K. Eaton, Reynolds-number scaling of the flat-plate turbulent boundary layer, J. Fluid Mech. 422 (2000), pp. 319–346.
  • D.B. DeGraaff, Reynolds number scaling of the turbulent boundary layer on a flat plate and on swept and unswept bumps, PhD diss., Stanford University, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.