161
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

On the application of a new formulation of nonlinear eddy viscosity based on anisotropy to numerical ocean models

, &
Pages 516-539 | Received 23 Apr 2013, Accepted 22 Apr 2014, Published online: 02 Jun 2014

References

  • H.D.I. Abarbanel, D. Holm, J.E. Marsden, and T. Ratiu, Richardson number criterion for the nonlinear stability of three-dimensional stratified flow, Phys. Rev. Lett. 52 (1984), pp. 2352–2355.
  • J. Boussinesq, Théorie de l’Écoulement Tourbillant, Mem. Présentés par Divers, Savants Acad. Sci. Inst. France 23 (1877), pp. 46–50.
  • H. Burchard, Note on the q2l equation by Mellor and Yamada (1982), J. Phys. Oceanogr. 31 (2001), pp. 1377–1387.
  • H. Burchard and H. Baumert, On the performance of a mixed layer model based on the k–ϵturbulence closure, J. Geophys. Res. 100 (1995), pp. 8523–8540.
  • H. Burchard and K. Bolding, Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer, J. Phys. Oceanogr. 31 (2001), pp. 1943–1968.
  • H. Burchard, K. Bolding, and M.R. Villarreal, GOTM – a general ocean turbulence model. Theory, applications and test cases, Tech. Rep. EUR 18745 EN, European Commission, 1999.
  • H. Burchard, O. Peterson, and T.P. Rippeth, Comparing the performance of the Mellor–Yamada and the k – ϵtwo-equation turbulence models, J. Geophys. Res. 103(C5) (1998), pp. 10543–10554.
  • H. Burchard and O. Peterson, Models of turbulence in marine environment – a comparative study of two equation turbulence models, J. Marine Syst. 21 (1999), pp. 29–53.
  • V.M. Canuto, Y. Cheng, and A.M. Howard, New third order moments for the convective boundary layer, J. Atmos. Sci. 58 (2001), pp. 1169–1172.
  • T.J. Craft, B.E. Launder, and K. Suga, Development and application of a cubic eddy viscosity model of turbulence, Int. J. Heat Fluid Flow 17 (1996), pp. 108–115.
  • T.J. Craft, B.E. Launder, and K. Suga, Prediction of turbulent transitional phenomena with a non-linear eddy viscosity model, Int. J. Heat and Fluid Flow 18(1) (1997), pp. 15–28
  • P.D. Craig and M.L. Banner, Modeling wave-enhanced turbulence in the ocean surface layer, J. Phys. Oceanogr. 24 (1994), pp. 2546–2559.
  • E. Deleersnijder and P. Luyten, On the practical advantages of the quasi-equilibrium version of the Mellor and Yamada Level 2.5 turbulence closure applied to marine modelling, Appl. Math. Model 18 (1994), pp. 281–287.
  • K.L. Denman, A time dependent model of the upper ocean, J. Phys. Oceanogr. 3 (1973), pp. 173–184.
  • H. Frey, A three-dimensional, baroclinic shelf sea circulation model – 1. The turbulence closure scheme and the one dimensional test model, Cont. Shelf Res. 11 (1991), pp. 365–395.
  • H. Friedrich, Simulation of the thermal stratification at the FLEX central station with a one dimensional integral model, in North Sea Dynamics, J. Sundermann and W. Lenz, eds., Springer-Verlag, Berlin, Heidelberg, 1983, pp. 396–411.
  • B. Galperin, L.H. Kantha, S. Hasid, and A. Rosati, A quasi-equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci. 45 (1988), pp. 55–62.
  • T.B. Gatski and C.G. Speziale, On explicit algebraic stress models for complex turbulent flows, J. Fluid Mech. 254 (1993), pp. 59–78.
  • J. Jovanovic and I. Otic, On the constitutive relation for the Reynolds stresses and the Prandtl–Kolmogorov hypothesis of effective viscosity in axisymmetric strained turbulence, J. Fluids Eng. 122 (2000), pp. 48–50.
  • L.H. Kantha and C.A. Clayson, An improved mixed layer model for geophysical applications, J. Geophys. Res. 99 (1994), pp. 25235–25266.
  • H. Kato and O.M. Phillips, On the penetration of a turbulent layer into stratified fluid, J. Fluid Mech. 37 (1969), pp. 643–655.
  • A.N. Kolmogorov, The equations of turbulent motion in an incompressible fluid, Izv. Akad. Nauk SSSR, Seria fizicheska, VI (1--2) (1942), pp. 56–58.
  • J. Kondo, Air–sea bulk transfer coefficients in diabatic conditions, Bound. Layer Meteorol. 9 (1975), pp. 91–112
  • W.G. Large, J.C. McWilliams, and S.C. Doney, Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys. 32 (1994), pp. 363–403
  • B.E. Launder and D.B. Spalding, Mathematical Models of Turbulence, Academic Press, London, 1972.
  • J.L. Lumley, Towards a turbulence constitutive relation, J. Fluid Mech. 41(Part 2) (1970), pp. 413–434.
  • S. Maity and H. Warrior, Reynolds stress anisotropy based turbulent eddy viscosity model applied to numerical ocean models, J. Fluids Eng. 133 (2011), pp. 645501–645503.
  • P.J. Martin, Simulation of the mixed layer at OWS November and Papa with several models, J. Geophys. Res. 90 (1985), pp. 903–916.
  • G.L. Mellor, One-Dimensional, Ocean surface layer modeling: A problem and a solution, J. Phys. Oceanogr. 31 (2001a), pp. 790–803.
  • G.L. Mellor and T. Yamada, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys. 20(4) (1982), pp. 851–875.
  • H.K. Myong and N. Kasagi, Prediction of anisotropy of the near wall turbulence with an anisotropic low-Reynolds number k – ϵturbulence model, J. Fluids Eng. 112 (1990), pp. 521–524.
  • S. Nisizima and A. Yoshizawa, Turbulent channel and Couette flows using an anisotropic k – ϵmodel, AIAA J. 25 (1987), pp. 414–420.
  • T. Pohlman, Estimating the influence of advection during FLEX’ 76 by means of a three-dimensional shelf sea circulation model, Dtsch. Hydrogr. Z. 49 (1997), pp. 215–226.
  • S.B. Pope, A more general effective-viscosity hypothesis, J. Fluid Mech. 72 (1975), pp. 331–340.
  • L. Prandtl, Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr. Akad. Wiss. Göttingen, Mathphys. (1945), pp. 6–19.
  • J.F. Price, On the scaling of stress-driven entrainment experiments, J. Fluid Mech. 90 (1979), pp. 509–529.
  • R. Rubinstein and J.M. Barton, Non-linear Reynolds stress models and renormalization group, Phys. Fluids A2 (1990), pp. 1472–1476.
  • T.-H. Shih, J. Zhu, and J.L. Lumley, A Realizable Reynolds Stress Algebraic Equation Model, Linthicum Heights, MD: NASA Center for Aerospace Information, Technical Report TM 105993, NASA, 1 (1993).
  • K.C. Soetje and K. Huber, A compilation of data on the thermal stratification at the central station in the northern North Sea during FLEX’76, ‘Meteor’ Forsch. Ergebnisse Reihe A 22 (1980), pp. 69–77.
  • D.B. Spalding and D.B. Launder, Mathematical Models and Turbulence. Mechanical Engineering Department, Imperial College, London, 1971
  • C.G. Speziale, On non-linear k – l and k – ϵmodels of turbulence, J. Fluid Mech. 178 (1987), pp. 459–475.
  • K. Suga, Recent developments in eddy viscosity modeling of turbulence, Toyota Central R & D Labs R & D Rev. 33 (1998), pp. 39–52.
  • D.B. Taulbee, An improved algebraic Reynolds stress model and corresponding nonlinear stress model, Phys. Fluids A 4(11) (1992), pp. 2555–2561.
  • M.M.M.El. Telbany and A.J. Reynolds, The Structure of Turbulent Plane Couette Flow, J. Fluids Eng. 104(3) (1982), pp. 367–372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.