536
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Particle subgrid scale modelling in large-eddy simulations of particle-laden turbulence

, &
Pages 101-135 | Received 30 Jan 2014, Accepted 21 Sep 2014, Published online: 11 Nov 2014

References

  • V. Armenio, U. Piomelli, and V. Fiorotto, Effect of the subgrid scales on particle motion, Phys. Fluids 11 (1999), pp. 3030–3042.
  • C. Marchioli, M. Salvetti, and A. Soldati, Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows, Phys. Fluids 20 (2008), pp. 040603.
  • K. Fukagata, S. Zahrai, and F. Bark, Dynamics of Brownian particles in a turbulent channel flow, Heat Mass Transf. 40 (2004), pp. 715–726.
  • B. Shotorban and F. Mashayek, A stochastic model for particle motion in large-eddy simulation, J. Turbul. 7 (2006), pp. 1–13.
  • A. Berrouk, D. Laurence, J. Riley, and D. Stock, Stochastic modelling of inertial particle dispersion by subgrid motion for LES of high Reynolds number pipe flow, J. Turbul. 8 (2007), pp. 1–20.
  • J. Kuerten and A. Vreman, Can turbophoresis be predicted by large-eddy simulation?, Phys. Fluids 17 (2005), pp. 011701.
  • B. Shotorban and F. Mashayek, Modeling subgrid-scale effects on particles by approximate deconvolution, Phys. Fluids 17 (2005), pp. 081701.
  • J. Kuerten, Subgrid modeling in particle-laden channel flow, Phys. Fluids 18 (2006), pp. 025108.
  • B. Shotorban, K. Zhang, and F. Mashayek, Improvement of particle concentration prediction in large-eddy simulation by defiltering, Int. J. Heat Mass Transf. 50 (2007), pp. 3728–3739.
  • M. Reeks, On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A 3 (1991), pp. 446–456.
  • S. Pope, Lagrangian PDF methods for turbulent flows, Annu. Rev. Fluid Mech. 26 (1994), pp. 23–63.
  • J. Minier and E. Peirano, The PDF approach to turbulent polydispersed two-phase flows, Phys. Reports 352 (2001), pp. 1–214.
  • J. Minier, E. Peirano, and S. Chibbaro, PDF model based on langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow, Phys. Fluids 16 (2004), pp. 2419–2431.
  • E. Peirano, S. Chibbaro, J. Pozorski, and J. Minier, Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows, Prog. Energy Combust. Sci. 32 (2006), pp. 315–371.
  • G. Csanady, Turbulent diffusion of heavy particles in the atmosphere, J. Atmos. Sci. 20 (1963), pp. 201–208.
  • O. Simonin, E. Deutsch, and J. Minier, Eulerian prediction of fluid/particle correlated motion in turbulent two-phase flows, Appl. Sci. Res. 51 (1993), pp. 275–283.
  • Q. Wang and K. Squires, Large eddy simulation of particle-laden turbulent channel flow, Phys. Fluids 8 (1996), pp. 1207–1223.
  • J. Weil, P. Sullivan, and C. Moeng, The use of large-eddy simulations in Lagrangian particle dispersion models, J. Atmos. Sci. 61 (2004), pp. 2877–2887 . .
  • A.E. Amiri and S.K. Hannani, Large-eddy simulation of heavy-particle transport in turbulent channel flow, Numer. Heat Transfer B 50 (2006), pp. 285–313.
  • P. Fede, O. Simonin, P. Villedieu, and K. Squires, Stochastic Modeling of the Turbulent Subgrid Fluid Velocity along Inertial Particle Trajectories, Proceedings of the Summer Program, Center for Turbulence Research, 2006, pp. 247–258.
  • I. Vinkovic, C. Aguirre, and S. Simoens, Large-eddy simulation and Lagrangian stochastic modeling of passive scalar dispersion in a turbulent boundary layer, J. Turbul. 7 (2006), pp. 1–14.
  • M. Bini and W. Jones, Particle acceleration in turbulent flows: a class of nonlinear stochastic models for intermittency, Phys. Fluids 19 (2007), pp. 035104.
  • J. Pozorski and S. Apte, Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, Int. J. Multiphase Flow 35 (2009), pp. 118–128.
  • M. Khan, X. Luo, F. Nicolleau, P. Tucker, and G. Iacono, Effects of LES sub-grid flow structure on particle deposition in a plane channel with a ribbed wall, Int. J. Numer. Methods Biomed. Eng. 26 (2010), pp. 999–1015.
  • C. Gobert and M. Manhart, Subgrid modelling for particle-LES by spectrally optimised interpolation (SOI), J. Comput. Phys. 230 (2011), pp. 7796–7820.
  • S. Chibbaro and J. Minier, The FDF or LES/PDF method for turbulent two-phase flows, J. Phys. Conf. Ser. 318 (2011), pp. 042049.
  • W. Michalek, J. Kuerten, J. Zeegers, R. Liew, J. Pozorski, and B. Geurts, A hybrid stochastic-deconvolution model for large-eddy simulation of particle-laden flow, Phys. Fluids 25 (2013), pp. 123302.
  • C. Gobert and M. Manhart, A priori and a posteriori analysis of models for large-eddy simulation of particle-laden flow, Phys. Fluid Dyn. 1004 (2010), pp. 1–18.
  • C. Gobert, Analytical assessment of models for large eddy simulation of particle laden flow, J. Turbul. 11 (2010), pp. 1–24.
  • C. Marchioli, M. Salvetti, and A. Soldati, Appraisal of energy recovering sub-gridscale models for large-eddy simulation of turbulent dispersed flows, Acta Mech. 201 (2008), pp. 277–296.
  • W. Michalek, R. Liew, J. Kuerten, and J. Zeegers, LES of droplet-laden non-isothermal channel flow, J. Phys. Conf. Ser. 318 (2011), pp. 042056.
  • OpenFOAM Foundation, OpenFOAM User Guide, 2nd ed., 2011. Available at: http://www.openfoam.org/docs/user/
  • H. Nilsson, Some Experiences on the Accuracy and Parallel Performance of OpenFOAM for CFD in Water Turbines, in Applied Parallel Computing. State of the Art in Scientific Computing, Lecture Notes in Computer Science Vol. 4699, B. Kågström, E. Elmroth, J. Dongarra, and J. Waśniewski, eds., Springer, Berlin Heidelberg, 2007, pp. 168–176.
  • M. Baba-Ahmadi and G. Tabor, Inlet conditions for large eddy simulation of gas-turbine swirl injectors, AIAA J. 46 (2008), pp. 1782–1790.
  • L. Silva, R. Damian, and P. Lage, Implementation and analysis of numerical solution of the population balance equation in CFD packages, Comput. Chem. Eng. 32 (2008), pp. 2933–2945.
  • G. Macpherson, N. Nordin, and H. Weller, Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics, Commun. Numer. Methods Eng. 26 (2009), pp. 263–273.
  • B. Selma, R. Bannari, and P. Proulx, A full integration of a dispersion and interface closures in the standard k-ε model of turbulence, Chem. Eng. Sci. 65 (2010), pp. 5417–5428.
  • G. Tabor and M. Baba-Ahmadi, Inlet conditions for large eddy simulation: a review, Comput. Fluids 39 (2010), pp. 553–567.
  • H. Marschall, R. Mornhinweg, A. Kossmann, S. Oberhauser, K. Langbein, and O. Hinrichsen, Numerical simulation of dispersed gas/liquid flows in bubble columns at high phase fractions using OpenFOAM, Chem. Eng. Technol. 34 (2011), pp. 1321–1327.
  • P. Renze, K. Heinen, and M. Schonherr, Experimental and numerical investigation of pressure swirl atomizers, Chem. Eng. Technol. 34 (2011), pp. 1191–1198.
  • Y. Wang, P. Chatterjee, and J. Ris, Large eddy simulation of fire plumes, Proc. Comb. Inst. 33 (2011), pp. 2473–2480.
  • R. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comp. Phys. 62 (1986), pp. 40–65.
  • P. Yeung and S. Pope, An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence, J. Comp. Phys. 79 (1988), pp. 373–416.
  • M. Cernick, Particle subgrid scale modeling in large-eddy simulation of particle-laden turbulence, Master’s thesis, McMaster University, 2013.
  • M. Germano, U. Piomelli, P. Moin, and W. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A 3 (1991), pp. 1760–1765.
  • D. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A 4 (1992), pp. 633–635.
  • S. Elghobashi and G. Truesdell, Direct simulation of particle dispersion in a decaying isotropic turbulence, J. Fluid Mech. 242 (1992), pp. 655–700.
  • V. Armenio and V. Fiorotto, The importance of forces acting on particles in turbulent flows, Phys. Fluids 13 (2001), pp. 2437–2440.
  • M. Maxey and J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26 (1983), pp. 883–889.
  • R. Clift, J. Grace, and M. Weber, Bubbles, Drops and Particles, Academic Press, London, 1978.
  • H. Strutt, S. Tullis, and M. Lightstone, Numerical methods for particle-laden DNS of homogeneous isotropic turbulence, Comput. Fluids 40 (2011), pp. 210–220.
  • M. Wells and D. Stock, The effects of crossing trajectories on the dispersion of particles in a turbulent flow, J. Fluid Mech. 136 (1983), pp. 31–62.
  • J. Riley and G. Patterson, Diffusion experiments with numerically integrated isotropic turbulence, Phys. Fluids 17 (1974), pp. 292–297.
  • S. Stolz, N. Adams, and L. Kleiser, An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows, Phys. Fluids 13 (2001), pp. 997–1015.
  • P. Van Cittert, Zum Einflu der Spaltbreite auf die Intensitaetsverteilung in Spektrallinien. II, Z. Phys. 69 (1931), pp. 298.
  • S. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, New York, 1992.
  • L. Wang and D. Stock, Dispersion of heavy particles by turbulent motion, J. Atmos. Sci. 50 (1993), pp. 1897–1913.
  • G. Box and M. Muller, A note on the generation of random normal deviates, Ann. Math. Stat. 29 (1958), pp. 610–611.
  • L. Gicquel, P. Givi, F. Jaberi, and S. Pope, Velocity filtered density function for large eddy simulation of turbulent flows, Phys. Fluids 14 (2002), pp. 1196–1213.
  • S. Heinz, On Fokker-Planck equations for turbulent reacting flows. Part 2. Filter density function for large eddy simulation, Flow Turbul. Combust. 70 (2003), pp. 153–181.
  • C. Meneveau and J. O’Neil, Scaling laws of the dissipation rate of turbulent subgrid-scale kinetic energy, Phys. Rev. E 49 (1994), pp. 2866–2874.
  • P. Moin, K. Squires, W. Cabot, and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A 3 (1991), pp. 2746–2757.
  • G. Taylor, Diffusion by continuous movements, Proc. Lond. Math. Soc. 20 (1921), pp. 196–211.
  • G. Jin and G. He, A nonlinear model for the subgrid timescale experienced by heavy particles in large eddy simulation of isotropic turbulence with a stochastic differential equation, New J. Phys. 15 (2013), pp. 035011.
  • B. Ray and L. Collins, Preferential concentration and relative velocity statistics of inertial particles in Navier-Sokes turbulence with and without filtering, J. Fluid Mech. 680 (2011), pp. 488–510.
  • M. Anand and S. Pope, Diffusion behind a line source in grid turbulence, Turbul. Shear Flows 4 (1985), pp. 1–16.
  • Z. Warhaft, The interference of thermal fields from line sources in grid turbulence, J. Fluid Mech. 144 (1984), pp. 363–387.
  • P. Fede and O. Simonin, Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles, Phys. Fluids 18 (2006), pp. 045103.
  • M. Muradoglu, P. Jenny, S. Pope, and D. Caughey, A consistent hybrid finite-volume/particle method for the pdf equations of turbulent reactive flows, J. Comput. Phys. 154 (1999), pp. 342–371.
  • S. Chibbaro and J. Minier, A note on the consistency of hybrid eulerian/lagrangian approach to multiphase flows, Int. J. Multiphase Flow 37 (2011), pp. 293–297.
  • J. Fung, J. Hunt, N. Malik, and R. Perkins, Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes, J. Fluid Mech. 236 (2006), pp. 281–318.
  • F. Bianco, S. Chibbaro, C. Marchioli, M. Salvetti, and A. Soldati, Intrinsic filtering errors of lagrangian particle tracking in LES flow fields, Phys. Fluids 24 (2012), pp. 045103.
  • S. Chibbaro, C. Marchioli, M. Salvetti, and A. Soldati, Particle tracking in LES flow fields: conditional lagrangian statistics of filtering error, J. Turbul. 15 (2014), pp. 22–33.
  • B. Geurts and J. Kuerten, Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow, Phys. Fluids 24 (2012), pp. 081702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.