223
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Turbulence investigation in a laboratory model of the ascending aorta

, , &
Pages 208-224 | Received 04 Dec 2013, Accepted 24 Oct 2014, Published online: 23 Jan 2015

References

  • D.A. Steinman, Image-based computational fluid dynamics modeling in realistic arterial geometries, Ann. Biomed. Eng. 30 (2002), pp. 483–497.
  • D.M. Wootton and D.N. Ku, Fluid mechanics of vascular systems, diseases, and thrombosis, Annu. Rev. Biomed. Eng. 1 (1999), pp. 299–329.
  • A. Kheradvar and G. Pedrizzetti, Vortex Formation in the Cardiovascular System, Springer-Verlag, London, 2012.
  • P.D. Stein and H.N. Sabbah, Measured turbulence and its effects on thrombus formation, Circ. Res. 35 (1974), pp. 608–614.
  • M.J. Garcia, P. Vandervoort, W.J. Stewart, B.W. Lytle, D.M. Cosgrove, J.D. Thomas, and B.P. Griffin, Mechanisms of hemolysis with mitral prosthetic regurgitation study using transesophageal echocardiography and fluid dynamic simulation, J. Am. Coll. Cardiol. 27 (1996), pp. 399–406.
  • G. Ismeno, A. Renzulli, A. Carozza, M. De Feo, M. Iannuzzi, P. Sante, and M. Cotrufo, Intravascular hemolysis after mitral and aortic valve replacement with different types of mechanical prostheses, Int. J. Cardiol. 69 (1999), pp. 179–183.
  • Y. Alemu and D. Bluestein, Flow-induced platelet activation and damage accumulation in a mechanical heart valve: Numerical studies, Artif. Organs 31 (2007), pp. 677–688.
  • R.M. Nerem and W.A. Seed, An in vivo study of aortic flow disturbances, Cardiovasc. Res. 6 (1972), pp. 1–14.
  • H. Nygaard, P.K. Paulsen, J.M. Hasenkam, E.K. Pedersen, and P.E.J. Rovsing, Turbulent stresses downstream of three mechanical aortic valve prostheses in human beings, J. Thorac. Cardiov. Sur. 107 (1994), pp. 438–446.
  • P.D. Stein and H.N. Sabbah, Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves, Circ. Res. 39 (1976), pp. 58–65.
  • C.J. Elkins, M. Markl, A. Iyengar, R. Wicker, and J.K. Eaton, Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows, Int. J. Heat Fluid Fl. 25 (2004), pp. 702–710.
  • P. Dyverfeldt, R. Gårdhagen, A. Sigfridsson, M. Karlsson, and T. Ebbers, On MRI turbulence quantification, Magn. Reson. Imaging 27 (2009), pp. 913–922.
  • A.F. Stalder, M.F. Russe, A. Frydrychowicz, A. Bock, J. Hennig, and M. Markl, Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters, Magnet. Reson. Med. 60 (2008), pp. 1218–1231.
  • P.J. Kilner, G.Z. Yang, R.H. Mohiaddin, D.N. Firmin, and D.B. Longmore, Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping, Circulation 88 (1993), pp. 2235–2247.
  • H.G. Bogren, M.H. Buonocore, and R.J. Valente, Four dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared age-matched normal subjects, J. Magn. Reson. Imaging 19 (2004), pp. 417–427.
  • M.D. Hope, T.A. Hope, S.E.S. Crook, K.G. Ordovas, T.H. Urbania, M.T. Alley, and C.B. Higgins, 4D Flow CMR in assessment of valve-related ascending aortic disease, J. Am. Coll. Cardiol. Mediacl Imaging 4 (2011), pp. 781–787.
  • J. Peacock, T. Jones, C. Tock, and R. Lutz, The onset of turbulence in physiological pulsatile flow in a straight tube, Exp. Fluid. 24 (1998), pp. 1–9.
  • S. Jin, J. Oshinski, and D.P. Giddens, Effects of wall motion and compliance on flow patterns in the ascending aorta, J. Biomech. Eng. 125 (2003), pp. 347–354.
  • S. Svensson, R. Gardhagen, E. Heiberg, T. Ebbers, D. Loyd, T. La¨nne, and M. Karlsson, Feasibility of patient specific aortic blood flow CFD simulation, Lect. Notes Comput. Sci. 4190 (2006), pp. 257–263.
  • K. Khanafer and R. Berguer, Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection, J. Biomech. 42 (2009), pp. 2642–2648.
  • A.C. Benim, A. Nahavandi, A. Assmann, D. Schubert, P. Feindt, and S.H. Suh, Simulation of blood flow in human aorta with emphasis on outlet boundary conditions, Appl. Math. Model. 35 (2011), pp. 3175–3188.
  • T. Yamaguchi, S. Kikkawa, and K. Parker, Simulation of nonstationary spectral analysis of turbulence in the aorta using a modified autoregressive or maximum entropy (ar/me) method, Med. Biol. Eng. Comput. 25 (1987), pp. 533–542.
  • F. Menter, R. Langtry, and S. Volker, Transition modelling for general purpose CFD codes flow, Turbul. Combust. 77 (2006), pp. 277–303.
  • U. Gulan, B. Luthi, M. Holzner, A. Liberzon, A. Tsinober, and W. Kinzelbach, Experimental study of aortic flow in the ascending aorta via Particle Tracking Velocimetry, Exp. Fluid 53 (2012), pp. 1469–1485.
  • S. Fortini, G. Querzoli, S. Espa, and A. Cenedese, Three-dimensional structure of the flow inside the left ventricle of the human heart, Exp. Fluids 54 (2013), pp. 1–9.
  • S. Espa, M.G. Badas, S. Fortini, G. Querzoli, and A. Cenedese, A Lagrangian Investigation of the flow inside the left ventricle, Eur. J. Mech. B-Fluid. 35 (2012), pp. 9–19.
  • M. Vukicevic, S. Fortini, G. Querzoli, S. Espa, and G. Pedrizzetti, Experimental study of the asymmetric heart valve prototype, Eur. J. Mech. B-Fluid. 35 (2012), pp. 54–60.
  • G. Querzoli, S. Fortini, and A. Cenedese, Effect of the prosthetic mitral valve on vortex dynamics and turbulence on the left ventricular flow, Phys. Fluids 22 (2010), pp. 041901–0419010.
  • A. Cenedese, Z. Del Prete, M. Miozzi, and G. Querzoli, A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting disk valves, Exp. Fluids 39 (2005), pp. 322–335.
  • M. Grigioni, C. Daniele, V. D’Avenio, and V. Barbaro, Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices, J. Biomech. 35 (2002), pp. 1613–1622.
  • A.P. Yoganathan, J.D. Lemmon, and J.T. Ellis, Heart Valve Dynamics, in Biomechanics: Principles and Applications, Taylor & Francis Group, LLC, Boca Raton, 2003, pp. 189–203.
  • R.N. Isnard, B.M. Pannier, S. Laurent, G.M. London, and M.E. Safar, Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: A noninvasive study, J Am Coll Cardiol. 13 (1989), pp. 399–405.
  • D. Baumgartner, C. Baumgartner, G. Mátyás, B. Steinmann, J. Löffler-Ragg, E. Schermer, U. Schweigmann, I. Baldissera, B. Frischhut, J. Hess, and I. Hammerer, Diagnostic power of aortic elastic properties in young patients with Marfan syndrome, J. Thorac. Cardiovasc. Surg. 129 (2005), pp. 730–739.
  • E.A. Cowen and S.G. Monismith, A hybrid digital particle tracking velocimetry technique, Exp. Fluids 22 (1997), pp. 199–211.
  • B.D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, Proceedings of the 1981 DARPA Imaging Understanding Workshop, Washington, DC, 1981, pp. 121–130.
  • C. Tomasi and T. Kanade, Shape and motion from image streams: a factorization method—part 3. Detection and tracking of point features, Tech. Rep. CMU–CS Carnegie Mellon University, Pittsburgh, PA, 1991, pp. 91–132.
  • A.A. Fontaine, J.T. Ellis, T.M. Healy, J. Hopmeyer, and A.P. Yoganathan, Identification of peak stresses in cardiac prostheses. A comparison of two-dimensional versus three-dimensional principal stresses analyses, ASAIO J. 42 (1996), pp. 154–163.
  • P.L. Blackshear, Mechanical haemolysis in flowing blood. in Biomechanics (1972) Its Foundation and Objectives, Y.C. Fung, ed., Prentice Hall, Englewood Cliffs, NJ, 1972.
  • W.L. Lim, Y.T. Chew, T.C. Chew, and H.T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage, J. Biomech. 34 (2001), pp. 1417–1427.
  • G. Querzoli, S. Fortini, S. Espa, M. Costantini, and F. Sorgini, Fluid dynamics of aortic root dilation in Marfan syndrome, J. Biomech. 47 (2014), pp. 3120–3128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.