581
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Large eddy simulation of turbulent horizontal buoyant jets

, &
Pages 772-808 | Received 29 Jul 2014, Accepted 10 Jan 2015, Published online: 13 Apr 2015

References

  • Dewan A, Arakeri JH, Srinivasan J. A note on high Schmidt number laminar buoyant jets discharged horizontally. Int Commun Heat Mass Transf. 1992;19:721–731.
  • Pantokratoras A. Horizontal penetration of inclined thermal buoyant water jets. Int Commun Heat Mass Transf. 1998;25:561–569.
  • Jirka GH. Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: single round jet. Environ Fluid Mech. 2004;4:1–56.
  • Xiao J, Travis JR, Breitung W. Non-Boussinesq integral model for horizontal turbulent buoyant round jets. Sci Technol Nucl Installations. 2009;2009:862934.
  • Satyanarayana S, Jaluria Y. A study of laminar buoyant jets discharged at an inclination to the vertical buoyant force. Int J Heat Mass Transf. 1982;25:1569–1577.
  • Arakeri JH, Das D, Srinivasan J. Bifurcation in a buoyant horizontal laminar jet. J Fluid Mech. 2000;412:61–73.
  • Querzoli G, Cenedese A. On the structure of a laminar buoyant jets released horizontally. J Hydraulic Res. 2005;42:71–85.
  • Deri E, Monavon A, Studer E, Abdo D, Tkatschenko I. Early development of the veil-shaped secondary flow in horizontal buoyant jets. Phys Fluids. 2011;23:073604.
  • Xu D, Chen J. Experimental study of stratified jet by simultaneous measurements of velocity and density fields. Exp Fluids. 2012;53:145–162.
  • Uddin M, Pollard A. Self-similarity of co-flowing jets: the virtual origin. Phys Fluids. 2007;19:068103.
  • Almeida TG, Jaberi FA. Large-eddy simulation of a dispersed particle-laden turbulent round jet. Int J Heat Mass Transf. 2008;51:683–695.
  • Bogey C, Baily C. Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. J Fluid Mech. 2009;627:129–160.
  • Zhou X, Luo KH, Williams JJR. Study of density effects in turbulent buoyant jets using large-eddy simulations. Theor Comput Fluid Dyn. 2001;15:95–120.
  • Foysi H, Mellado JP, Sarkar S. Large-eddy simulation of variable-density round and plane jets. Int J Heat Fluid Flow. 2010;31:307–314.
  • Pham HT, Sarkar S. Internal waves and turbulence in a stable stratified jet. J Fluid Mech. 2010;648:297–324.
  • Pham HT, Sarkar S. Mixing events in a stratified jet subject to surface wind and buoyancy forcing. J Fluid Mech. 2011;685:54–82.
  • Huai W-X, Li Z-W, Qian Z-D, Zeng Y-H, Han J. Numerical simulation of horizontal buoyant wall jet. J Hydrodyn. 2010;22:58–65.
  • Hussein JH, Capp SP, and George WK. Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J Fluid Mech. 1994;258:31–75.
  • Nicoud F, Toda HB, Cabrit O, Bose S, Lee J. Using singular values to build a subgrid-scale model for large eddy simulations. Phys Fluids. 2011;23:085106.
  • Ghaisas NS, Shetty DA, Frankel SH. Large eddy simulation of thermal driven cavity: evaluation of subgrid scale models and flow physics. Int J Heat Mass Transf. 2013;56:606–624.
  • Shetty DA, Fisher T, Chunekar AR, Frankel SH. High-order incompressible large-eddy simulation of fully inhomogeneous turbulent flows. J Comput Phys. 2010;229:8802–8822.
  • Delorme Y, Anupindi K, Kerlo AE, Shetty DA, Rodefeld M, Chen J, Frankel SH. Large eddy simulation of powered fontan hemodynamics. J Biomech. 2013;46:408–422.
  • Jiang G, Shu CW. Efficient implementation of weighted ENO schemes. J Comput Phys. 1996;126:202–228.
  • Morinishi Y, Lund TS, Vasilyev OV, Moin P. Fully conservative higher-order finite difference schemes for incompressible flow. J Comput Phys. 1998;143:90–124.
  • Shetty DA, Shen J, Chandy A, Frankel SH. A pressure correction scheme for rotational Navier– Stokes equations and its application to rotating turbulent flows. Comput Comput Phys. 2011;9:740–755.
  • Adams J. Mudpack: multigrid Fortran software for the efficient solution of linear elliptic partial differential equations. Appl Math Comput. 1989;34:113–146.
  • Shetty DA, Chandy A, Frankel SH. A new fractal interaction by exchange with the mean mixing model for large eddy simulation/filtered mass density function applied to a multiscalar three-stream turbulent jet. Phys Fluids. 2010;22:025102.
  • Glaze DJ, Frankel SH. Stochastic inlet conditions for large-eddy simulation of a fully turbulent jet. AIAA J. 2003;41:1064–1073.
  • Pham MV, Plourde F, Doan KS. Direct and large-eddy simulations of a pure thermal plume. Phys Fluids. 2007;19:125103.
  • Yan ZH. Large eddy simulations of a turbulent thermal plume. Heat Mass Transf. 2007;43:503–514.
  • Blanquart G, Pitsch H. Large-eddy simulation of a turbulent buoyant helium plume. Stanford (CA): Center for Turbulence Research Annual Research Briefs; 2008. p. 245–252.
  • Burton GC. Large-eddy simulation of a turbulent helium-air plume using the nLES method. Stanford (CA): Center for Turbulence Research Annual Research Briefs; 2009. p. 261–271.
  • Boersma BJ, Brethouwer G, Nieuwstadt FTM. A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys Fluids. 1998;10:899–909.
  • Akselvoll K, Moin P. Large-eddy simulation of turbulent confined co-annular jets. J Fluid Mech. 1996;315:387–411.
  • Johansson BCV. Boundary conditions for open boundaries for the incompressible Navier–Stokes equation. J Comput Phys. 1993;105:232–251.
  • Basu AJ, Mansour NN. Large eddy simulation of a forced round turbulent buoyant plume in neutral surroundings. Stanford (CA): Center for Turbulence Research Annual Research Briefs; 1999. p. 239–248.
  • Liu C, Liu Z. High-order finite difference and multigrid methods for spatially evolving instability in a planar channel. J Comput Phys. 1993;106:92–100.
  • Erturk E, Corke TC. Boundary layer leading-edge receptivity to sound at incidence angles. J Fluid Mech. 2001;444:383–407.
  • Erturk E. Numerical solutions of 2-D steady incompressible flow over a backward-facing step. Part I: high Reynolds number solutions. Comput Fluids. 2008;37:633–655.
  • Turner JS. Turbulent entrainment: the development of the entrainment assumption and its application to geophysical flows. J Fluid Mech. 1986;173:431–471.
  • Sreenivas KR, Prasad Ajay. Vortex-dynamics model for entrainment in jets and plumes. Phys Fluids. 2000;12:2101–2107.
  • Pope SB. Turbulent flows. Cambridge (UK): Cambridge University Press; 2000.
  • Xu Duo. Experimental study of a turbulent stratified jet [PhD dissertation]. West Lafayette (IN): Purdue University; 2012.
  • Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech. 1995;285:69–94.
  • Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech. 2010;656:5–28.
  • Schmid PJ. Application of the dynamic mode decomposition to experimental data. Exp Fluids. 2011;50:1123–1130.
  • Kumar R. Dynamic mode decomposition of detonation waves [MS thesis]. Arlington (TX): University of Texas at Arlington; 2012.
  • Mahesh K. The interaction of jets with crossflow. Ann Rev Fluid Mech. 2013;345:379–407.
  • Lim TT, New TH, Luo SC. On the development of large-scale structures of a jet normal to a cross flow. Phys Fluids. 2001;13:770–775.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.