471
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Interaction of inner and outer layers in plane and radial wall jets

&
Pages 460-483 | Received 23 Sep 2014, Accepted 10 Jan 2015, Published online: 16 Feb 2015

References

  • Launder BE, Rodi W. The turbulent wall jet – measurements and modeling. Annu Rev Fluid Mech. 1983; 15: 429–459.
  • Tachie MF, Balachandar R, Bergstrom DJ. Scaling the inner region of turbulent plane wall jets. Exp Fluids. 2002; 33: 351–354.
  • Glauert MB. The wall jet. J Fluid Mech. 1956; 1: 625–643.
  • Dejoan A, Leschziner MA. Large eddy simulation of a plane turbulent wall jet. Phys Fluids. 2005; 17: 025102.
  • Eriksson JG, Karlsson RI, Persson J. An experimental study of a two-dimensional plane wall jet. Exp Fluids. 1998; 25: 50–60.
  • Wygnanski I, Katz Y, Horev E. On the applicability of various scaling laws to the turbulent wall jet. J Fluid Mech. 1992; 234: 669–690.
  • Bakke P. An experimental investigation of a wall jet. J Fluid Mech. 1957; 2: 467–472.
  • Gerodimos G, So RMC. Near-wall modeling of plane turbulent wall jets. J Fluids Eng. 1997; 119: 304–313.
  • Smith BS. Wall jet boundary layer flows over smooth and rough surfaces [PhD thesis]. Blacksburg (VA): Virginia Tech.; 2008.
  • Banyassady R, Piomelli U. Turbulent plane wall jets over smooth and rough surfaces. J Turbul. 2014; 15: 186–207.
  • Dejoan A, Leschziner MA. Separating the effects of wall blocking and near-wall shear in the interaction between the wall and the free shear layer in a wall jet. Phys Fluids. 2006; 18: 65110.
  • Sharma RN. Experimental investigation of conical wall jets. AIAA J. 1981; 19: 28–33.
  • Padmanabham G, Lakshmana Gowda BH. Mean and turbulence characteristics of a class of three-dimensional wall jets – part 2: turbulence characteristics. J Fluids Eng. 1991; 113: 629–634.
  • Bradshaw P, Love EM. The normal impingement of a circular air jet on a flat surface. London: Aeronautical Research Council; 1959. ( R & M 3205).
  • Myszko M. Experimental and computational studies of factors affecting impinging jet flowfields [PhD thesis]. Shrivenham: Royal Military College of Science; 1997.
  • Cooper D, Jackson DC, Launder BE, Liao GX. Impinging jet studies for turbulence model assessment – I. Flow-field experiments. Int J Heat Mass Transf. 1993; 36: 2675–2684.
  • Dewan A, Dutta R, Srinivasan B. Recent trends in computation of turbulent jet impingement heat transfer. Heat Transf Eng. 2012; 33: 447–460.
  • Kim J, Hangan H. Numerical simulations of impinging jets with application to downbursts. J Wind Eng Ind Aerodyn. 2007; 95: 279–298.
  • Sengupta A, Sarkar PP. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. J Wind Eng Ind Aerodyn. 2008; 96: 345–365.
  • Guerra DRS, Su J, Freire APS. The near wall behavior of an impinging jet. Int J Heat Mass Transf. 2005; 48: 2829–2840.
  • Behnia M, Parneix S, Shabany Y, Durbin PA. Numerical study of turbulent heat transfer in confined and unconfined impinging jets. Int J Heat Fluid Flow. 1999; 20: 1–9.
  • Fairweather M, Hargrave G. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp Fluids. 2002; 33: 464–471.
  • Tachie MF. Open channel turbulent boundary layers and wall jets on rough surfaces [PhD thesis]. Saskatoon: University of Saskatchewan; 2000.
  • Schneider ME, Goldstein RJ. Laser Doppler measurement of turbulence parameters in a two–dimensional plane wall jet. Phys Fluids. 1994; 6: 3116–3129.
  • Craft TJ, Graham LJW, Launder BE. Impinging jet studies for turbulence model assessment – II. An examination of the performance of four turbulence models. Int J Heat Mass Transf. 1993; 36: 2685–2697.
  • Hall JW, Ewing D. On the dynamics of the large–scale structures in round impinging jets. J Fluid Mech. 2006; 555: 439–458.
  • Poreh M, Tsuei YG, Cermak JE. Investigation of a turbulent radial wall jet. J Appl Mech. 1967; 34: 457–463.
  • Govindan AP, Raju KS. Hydrodynamics of a radial wall jet. J Appl Mech. 1974; 41: 518–519.
  • Knowles K, Myszko M. Turbulence measurements in radial wall-jets. Exp Therm Fluid Sci. 1998; 17: 71–78.
  • Jaramillo JE, Perez-Segarra CD, Rodriguez I, Oliva A. Numerical study of plane and round impinging jets using RANS models. Numer Heat Transf. 2008; 54: 213–237.
  • Tanaka T, Tanaka E. Experimental studies of a radial turbulent jet (2nd report, wall jet on a flat smooth plate). Bull JSME. 1977; 20: 209–215.
  • Padmanabham G, Lakshmana Gowda BH. Mean and turbulence characteristics of a class of three-dimensional wall jets. Part 1: mean flow characteristics. J Fluids Eng. 1991; 113: 620–628.
  • Craft TJ, Launder BE. On the spreading mechanism of the three–dimensional turbulent wall jet. J Fluid Mech. 2001; 435: 305–326.
  • Law AWK, Herlina. An experimental study on turbulent circular wall jets. J Hydraulic Eng. 2002; 128: 161–174.
  • Hall JW, Ewing D. Three-dimensional turbulent wall jets issuing from moderate-aspect-ratio rectangular channels. AIAA J. 2007; 45: 1177–1186.
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Patel VC. Self preserving, two–dimensional turbulent jets and wall jets in a moving stream [Master’s thesis]. Montreal: McGill University; 1962.
  • Launder BE, Rodi W.
  • Thailand A, Mathieu J. Jet parietal. J Mécan. 1967; 6: 103–131.
  • Schwarz WH, Cosart WP. The two-dimensional turbulent wall-jet. J Fluid Mech. 1961; 10: 481–495.
  • Özdemir IB, Whitelaw JH. Impingement of an axisymmetric jet on unheated and heated flat plates. J Fluid Mech. 1992; 240: 503–532.
  • Uddin N, Neumann SO, Weigand B, Younis BA. Large-eddy simulations and heat–flux modeling in a turbulent impinging jet. Numer Heat Transf. 2009; 55: 906–930.
  • Hammond GP. Complete velocity profile and ‘optimum’ skin friction formulas for the plane wall-jet. J Fluids Eng. 1982; 104: 59–65.
  • Clauser FH. Turbulent boundary layers in adverse pressure gradients. J Aeronaut Sci. 1954; 21: 91–108.
  • Bradshaw P, Gee MT. Turbulent wall jets with and without an external stream. London: Aeronautical Research Council; 1962. ( R & M 3252)
  • Abrahamsson H, Johansson B, Löfdahl L. A turbulent plane two–dimensional wall–jet in a quiescent surrounding. Eur J Mech B Fluids. 1994; 13: 533–556.
  • Tachie MF, Balachandar R, Bergstrom DJ. Roughness effects on turbulent plane wall jets in an open channel. Exp Fluids. 2004; 37: 281–292.
  • Uddin N, Neumann SO, Weigand B. LES simulations of an impinging jet: on the origin of the second peak in the Nusselt number distribution. Int J Heat Mass Transf. 2013; 57: 356–368.
  • Stanton TE, Marshall D, Bryant CN. On the conditions at the boundary of a fluid in turbulent motion. Proc R Soc Lond Ser A. 1920; 97: 413–434.
  • Preston JH. The determination of turbulent skin friction by means of Pitot tubes. J R Aeronaut Soc. 1954; 58: 109–121.
  • Rostamy N, Bergstrom DJ, Sumner D, Bugg JD. An experimental study of a turbulent wall jet on smooth and transitionally enough surfaces. J Fluids Eng. 2011; 133: 111207.
  • Verhoff A. The two-dimensional, turbulent wall jet with and without external stream. Princeton (NJ): Princeton University; 1963. ( Tech. Rep. 626).
  • Spalding DB. A unified theory of friction, heat transfer and mass transfer in the turbulent boundary layer and wall jet. London: Aeronautical Research Council; 1964. ( C.P. 829).
  • George WK, Abrahamsson H, Eriksson J, Karlsson RI, Lofdahal L, Wosnik M. A similarity theory for a turbulent plane wall jet without external stream. J Fluid Mech. 2000; 425: 367–411.
  • Gogineni S, Shih C. Experimental investigation of the unsteady structure of a transitional plane wall jet. Exp Fluids. 1997; 23: 121–129.
  • Ljuboja M, Rodi W. Calculation of turbulent wall jets with an algebraic Reynolds stress model. J Fluids Eng. 1980; 102: 350–356.
  • Ferziger JH, Perić M. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer; 1996.
  • Germano M, Piomelli U, Moin P, Cabot WH. A dynamic subgrid scale eddy viscosity model. Phys Fluids. 1991; 3: 1760–1765.
  • Meneveau C, Lund TS, Cabot WH. A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech. 1996; 319: 353–385.
  • Kim J, Moin P. Application of a fractional-step method to incompressible Navier–Stokes equations. J Comput Phys. 1985; 59: 308–323.
  • Wu W, Piomelli U. Large-eddy simulation of impinging jets with embedded azimuthal vortices. J. Turbul. 2014;16:44–66.
  • Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys. 1976; 21: 251–269.
  • Batten P, Goldberg U, Chakravarthy S. Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 2004; 42: 485–492.
  • Keating A, Piomelli U, Balaras E, Kaltenbach HJ. A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys Fluids. 2004; 16: 4696–4712.
  • Spille-Kohoff A., Kaltenbach HJ. Generation of turbulent inflow data with a prescribed shear-stress profile. In: Liu C., Sakell L., Beutner T., editors. DNS/LES – Progress and Challenges: Proceedings of the Third AFOSR International Conference on DNS/LES; 2001 Oct; Arlington, TX: Greyden Press. 2001; p. 319–326.
  • De Prisco G, Piomelli U, Keating A. Improved turbulence generation techniques for hybrid RANS/LES calculations. J Turbul. 2008; 9: 1–20.
  • Clark JA. A study of incompressible turbulent boundary layers in channel flow. J Basic Eng. 1968; 90: 455–467.
  • Rostamy N, Bergstrom DJ, Sumner D, Bugg JD. The effect of surface roughness on the turbulence structure of a plane wall jet. Phys Fluids. 2011; 23: 85103.
  • Sigalla A. Measurements of skin friction in a plane turbulent wall jet. J R Aeronaut Soc. 1958; 6: 873–877.
  • Kobayashi R, Fujisawa N. Curvature effects on two-dimensional turbulent wall jets. Arch Appl Mech. 1983; 53: 409–417.
  • Piomelli U, Yuan J. Numerical simulations of spatially developing, accelerating boundary layers. Phys Fluids. 2013; 25: 101304.
  • Nagano Y, Tsuji T, Houra T. Structure of turbulent boundary layer subjected to adverse pressure gradient. Int J Heat Fluid Flow. 1998; 19: 563–572.
  • Spalart PR, Watmuff JH. Experimental and numerical study of a turbulent boundary layer with pressure gradients. J Fluid Mech. 1993; 249: 337–371.
  • Patel VC. Calibration of the Preston tube and limitations on its use in pressure gradients. J Fluid Mech. 1965; 23: 185–208.
  • Bourassa C, Thomas FO. An experimental investigation of a highly accelerated turbulent boundary layer. J Fluid Mech. 2009; 634: 359–404.
  • Ong L, Wallace M. Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer. J Fluid Mech. 1998; 367: 291–328.
  • Wallace JM, Brodkey RS. Reynolds stress and joint probability density distributions in the u-v plane of a turbulent channel flow. Phys Fluids. 1977; 20: 351–355.
  • Wallace JM, Eckelmann H, Brodkey RS. The wall region in turbulent shear flow. J Fluid Mech. 1972; 54: 39–48.
  • Karlsson RI, Eriksson J, Persson J. LDV measurements in a plane wall jet in a large enclosure. In: Adrian RJ, Durão DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH, editors. Developments in Laser Techniques and Applications to Fluid Mechanics: Proceeding of the 6th International Symposia on Application of Laser Techniques to Fluid Mechanics; 1992 July 20–23; Lisbon (Portugal): Springer-Verlag; 1992. p. 311–332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.