206
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of the shear-improved Smagorinsky model in laminar-turbulent transitional channel flow

, &
Pages 925-936 | Received 30 Oct 2014, Accepted 14 Apr 2015, Published online: 28 May 2015

References

  • Pope SB. Turbulent flows. Cambridge (UK): Cambridge University Press; 2000.
  • Sagaut P. Large eddy simulation for incompressible flows. Berlin Heidelberg (Germany): Springer-Verlag; 2005.
  • Smagorinsky J. General circulation experiments with the primitive Equations I. The basic experiment. Mon Weather Rev. 1963; 91: 99–164.
  • van Driest ER. On turbulent flow near a wall. J Aerosp Sci. 1956; 23: 1007–1011.
  • Germano M, Piomelli U, Moin P, Cabot WH. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 1991; 3: 1760–1765.
  • Lilly DK. A proposed modification of Germano subgrid-scale closure method. Phys Fluids A. 1992; 4: 633–635.
  • Lévêque E, Toschi F, Shao L, Bertoglio JP. Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows. J Fluid Mech. 2007; 570: 491–502.
  • Boudet J, Caro J, Shao L, Lévêque E. Numerical studies towards practical large-eddy simulation. J Thermal Sci. 2007; 16: 328–336.
  • Saha P, Biswas G. Assessment of a shear-improved subgrid stress closure for turbulent channel flows. Int J Heat Mass Transf. 2010; 53: 4789–4796.
  • Drazin PG, Reid WH. Hydrodynamic stability. Cambridge (UK): Cambridge University Press; 1981.
  • Orszag SA, Patera AT. Secondary instability of wall-bounded shear flows. J Fluid Mech. 1983; 128: 347–385.
  • Herbert T. Secondary instability of boundary layers. Annu Rev Fluid Mech. 1988; 20: 487–526.
  • Lee CB. New features of CS solitons and the formation of vortices. Phys Lett A. 1998; 247: 397–402.
  • Leib SJ, Wundrow DW, Goldstein ME. Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J Fluid Mech. 1999; 380: 169–203.
  • Lee CB. Possible universal transitional scenario in a flat plate boundary layer: measurement and visualization. Phys Rev E. 2000; 62: 3659–3671.
  • Rempfer D. Low-dimensional modeling and numerical simulation of transition in simple shear flows. Annu Rev Fluid Mech. 2003; 35: 229–265.
  • Högberg M, Bewley TR, Henningson DS. Linear feedback control and estimation of transition in plane channel flow. J Fluid Mech. 2003; 481: 149–175.
  • Lee CB, Li RQ. A dominate flow structure in a transitional boundary layer. J Turbulence. 2007; 8: 1–37.
  • Lee CB, Wu JZ. Transition in wall-bounded flows. Appl Mech Rev. 2008; 61: 030802.
  • Klebanoff PS, Tidstrom KD, Sargent LM. The three-dimensional nature of boundary-layer instability. J Fluid Mech. 1962; 12: 1–34.
  • Spalart PR. Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech. 1988; 187: 61–98.
  • Laurien E, Kleiser L. Numerical simulation of boundary-layer transition and transition control. J Fluid Mech. 1989; 199: 403–440.
  • Piomelli U, Zang TA, Speziale CG, Hussaini MY. On the large-eddy simulation of transitional wall-bounded flows. Phys Fluids A. 1990; 2: 257–265.
  • Kleiser L, Zang TA. Numerical simulation of transition in wall-bounded shear flows. Annu Rev Fluid Mech. 1991; 23: 495–537.
  • Spalart PR, Watmuff JH. Experimental and numerical study of a turbulent boundary layer with pressure gradients. J Fluid Mech. 1993; 249: 337–371.
  • Kachanov YS. Physical mechanisms of laminar-boundary-layer transition. Annu Rev Fluid Mech. 1994; 26: 411–482.
  • Rist U, Fasel HF. Direct numerical simulation of controlled transition in a flat-plate boundary layer. J Fluid Mech. 1995; 298: 211–248.
  • Voke PR, Yang Z. Numerical study of bypass transition. Phys Fluids. 1995; 7: 2256–2264.
  • Ducros F, Comte P, Lesieur M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J Fluid Mech. 1996; 326: 1–36.
  • Huai X, Joslin RD. Piomelli U. Large-eddy simulation of laminar turbulent transition in boundary layers. Theor Comput Fluid Dyn. 1997; 9: 149–163.
  • Schlatter P, Stolz S, Kleiser L. LES of transitional flow using the approximate deconvolution model. Int J Heat Fluid Flow. 2004; 25: 549–558.
  • Wu XH, Moin P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J Fluid Mech. 2009; 630: 5–41.
  • Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech. 2010; 659: 116–126.
  • Sayadi T, Moin P. Large eddy simulation of controlled transition to turbulence. Phys Fluids. 2012; 24: 114103.
  • Lu P, Liu CQ. DNS study on mechanism of small length scale generation in late boundary layer transition. Physica D. 2012; 241: 11–24.
  • Sayadi T, Hamman CW, Moin P. Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J Fluid Mech. 2013; 724: 480–509.
  • Zhao Y, Xia Z, Shi Y, Xiao Z, Chen S. Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Phys Fluids. 2014; 26: 095103.
  • Liu S, Katz J, Meneveau C. Evolution and modelling of subgrid scales during rapid straining of turbulence. J Fluid Mech. 1999; 387: 281–320.
  • Gilbert N, Kleiser L. Near-wall phenomena in transition to turbulence. In: Kline SJ, Afgan NH, editors. Near wall turbulence. New York (NY): Hemisphere Publishing Corp.; 1990. p. 7–27.
  • Kim J, Moin P, Moser RD. Turbulent statistics in fully developed channel flow at low Reynolds number. J Fluid Mech. 1987; 177: 133–166.
  • Canuto C, Hussaini MY, Quateroni A, Zang TA. Spectral methods in fluid dynamics. Berlin Heidelberg (Germany): Springer-Verlag; 1988.
  • Chen S, Xia Z, Pei S, Wang J, Yang Y, Xiao Z, Shi Y. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J Fluid Mech. 2012; 703: 1–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.