312
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Large-eddy simulations of temporally accelerating turbulent channel flow

&
Pages 1091-1113 | Received 31 Oct 2014, Accepted 09 May 2015, Published online: 22 Jun 2015

References

  • Lefebvre PJ, White FM. Experiments on transition to turbulence in a constant-acceleration pipe flow. ASME: J Fluids Eng. 1989;111(4):428–432.
  • Lefebvre PJ, White FM. Further experiments on transition to turbulence in constant-acceleration pipe flow. ASME: J Fluids Eng. 1991;113(2):223–227.
  • Greenblatt D, Moss EA. Pipe-flow relaminarization by temporal acceleration. Phys Fluids. 1999;11(11):3478–3481.
  • Greenblatt D, Moss EA. Rapid temporal acceleration of a turbulent pipe flow. J Fluid Mech. 2004;514:65–75.
  • He, S., Jackson JD. A study of turbulence under conditions of transient flow in a pipe. J Fluid Mech. 2000;408:1–38.
  • He S, Ariyaratne C, Vardy AE. Wall shear stress in accelerating turbulent pipe flow. J Fluid Mech. 2011;685:440–460.
  • Chung YM. Unsteady turbulent flow with sudden pressure gradient changes. Int J Numerical Methods Fluids. 2005;47(8–9):925–930.
  • Chung YM. Numerical simulations of transient turbulent flows. In: Alfredsson H, Fraansson J, editors. 6th European Fluid Mechanics Conference; 2006 Jun 26–30; Stockholm; 2006.
  • Jung SY, Chung YM. LES of transient turbulent flow in a pipe. In: Palma JMLM, Silva Lopes A, editors. European Turbulence Conference 11; 2007 Jun 25–28; Porto; Berlin: Springer-Verlag; 2007.
  • Jung SY, Chung YM. Large-eddy simulation of accelerated turbulent flow in a pipe. In: Humphrey JAC, gatski TB, Eaton JK, Friedrich R, Kasagi N, editors. Turbulence and Shear Flow Phenomena -6; 2009 Jun 22–24; Seoul; 2009.
  • Jung SY, Chung YM. Large-eddy simulations of accelerated turbulent flow in a circular pipe. Int J Heat Fluid Flow. 2012;33(1):1–8.
  • Seddighi M, He S, Vardy AE, Orlandi P. Direct numerical simulation of an accelerating channel flow. Flow Turbulence Combustion. 2014;92(1–2):473–502.
  • Germano M, Piomelli U, Moin P, Cabot WH. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 1991;3(7):1760–1765.
  • Lilly DK. A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A. 1992;4(3):633–635.
  • Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence Combustion. 1999;62(3):183–200.
  • Chung YM, Talha T. Effectiveness of active flow control for turbulent skin friction drag reduction. Phys Fluids. 2011;23(2):025102.
  • Hurst E, Yang Q, Chung YM. The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J Fluid Mech. 2014;759:28–55.
  • Kim K, Baek S-J, Sung HJ. An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations. Int J Numerical Methods Fluids. 2002;38(2):125–138.
  • Chung YM, Hurst E. Turbulent drag reduction at high Reynolds numbers. In: Zhou Y, Liu Y, Huang L, Hodges DH, editors. Fluid-structure-sound interactions and control. Berlin: Springer-Verlag; 2014; p. 95–99.
  • Talha T. A numerical investigation of three-dimensional unsteady turbulent channel flow subjected to temporal acceleration [PhD thesis]. UK: School of Engineering, University of Warwick; 2012.
  • Hurst E. A numerical study of turbulent drag reduction using streamwise travelling waves of spanwise wall velocity [PhD thesis]. UK: School of Engineering, University of Warwick; 2015.
  • Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech. 1987;177:133–166.
  • Dean RB. Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. ASME: J Fluids Eng. 1978;100(2):215–223.
  • Moser R, Kim J, Mansour N. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys Fluids. 1999;11(4):943–945.
  • Abe H, Kawamura H, Matsuo Y. Surface heat-flux fluctuations in a turbulent channel flow up to Reτ = 1020 with Pr = 0.025 and 0.71. Int J Heat Fluid Flow. 2004;25(3):404–419.
  • Abe H, Kawamura H, Matsuo Y. Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. ASME: J Fluids Eng. 2001;123(2):382–393.
  • del Álamo JC, Jiménez J. Spectra of the very large anisotropic scales in turbulent channels. Phys Fluids. 2003;15(6):L41–L44.
  • del Álamo JC, Jiménez J, Zandonade P, Moser RD. Scaling of the energy spectra of turbulent channels. J Fluid Mech. 2004;500:135–144.
  • Hoyas S, Jiménez J. Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003. Phys Fluids. 2006;18(1):011702.
  • Bernardini M, Pirozzoli S, Orlandi P. Velocity statistics in turbulent channel flow up to Reτ = 4000. J Fluid Mech. 2014;742:171–191.
  • Jiménez J, Moin P. The minimal flow unit in near-wall turbulence. J Fluid Mech. 1991;225:213–240.
  • Choi H, Moin P. Effects of the computational time step on numerical solutions of turbulent flow. J Comput Phys. 1994;113(1):1–4.
  • Seddighi M, He S, Orlandi P, Vardy AE. A comparative study of turbulence in ramp-up and ramp-down unsteady flows. Flow Turbulence Combust. 2011;86(3–4):439–454.
  • He S, Seddighi M. Turbulence in transient channel flow. J Fluid Mech. 2013;715:60–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.