427
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Temperature gradient spectra and temperature dissipation rate in a turbulent convective flow

&
Pages 1179-1198 | Received 07 Nov 2014, Accepted 03 Jul 2015, Published online: 11 Sep 2015

References

  • Kraichnan R. Small-scale structure of a scalar field convected by turbulence. Phys Fluids. 1968;11:941–945.
  • Batchelor GK. Small scale variation of convected quantities like temperature in a turbulent fluid. J Fluid Mech. 1959;5:113–133.
  • Bogucki D, Domaradzki J, Anderson C, et al.. Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence. Opt Expr. 2007;15:7224–7230.
  • Shay TJ, Gregg M. Convectively driven turbulent mixing in the upper ocean. J Phys Oceanogr. 1986;16:1777–1798.
  • Trenberth K. Earth system processes. In: McCracken MC, Perry JS, editors. Encyclopedia of global environmental change. Chichester: John Wiley & Sons; 2002, p. 13–30.
  • Osborn TR, Cox CS. Oceanic fine structure. Geophys Fluid Dyn. 1972;3:321–345.
  • Jeffery C, Woolf D, Robinson I, et al.. One-dimensional modelling of convective CO2 exchange in the Tropical Atlantic. Ocean Modelling. 2007;19:161–182.
  • Turner JS. Buoyancy effects in fluids. Cambridge, NY: Cambridge University Press; 1973.
  • Soloviev A, Lukas R. The near-surface layer of the ocean: structure, dynamics and applications. Vol. 31. The Netherlands: Springer Science & Business Media; 2006.
  • Katsaros KB, Liu WT, Businger JA, et al.. Heat thermal structure in the interfacial boundary layer measured in an open tank of water in turbulent free convection. J. Fluid Mech. 1977;83:311–335.
  • Soloviev A, Klinger B. Open ocean convection. In: Steele JH, editor. Encyclopedia of ocean sciences. Oxford: Academic Press; 2001, p. 2015–2022.
  • Bailon-Cuba J, Emran MS, Schumacher J. Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J Fluid Mech. 2010;655:152–173.
  • Howard LN. Convection at high Rayleigh number. In: Görtler H, editor. Applied mechanics. Proceedings of the Eleventh International Congress of Applied Mechanics; 1964; Munich (Germany). Springer-Verlag; 1966.
  • Bogucki D, Luo H, Domaradzki J. Experimental evidence of the Kraichnan scalar spectrum at high reynolds numbers. J Phys Oceanogr. 2012;42:1717–1728.
  • Bogucki D, Domaradzki A, Yeung PK. Direct numerical simulations of passive scalars with Pr > 1 advected by turbulent flow. J Fluid Mech. 1997;343:111–130.
  • Fincham A, Spedding G. Low cost, high resolution DPIV for measurement of turbulent fluid flow. Exp Fluids. 1997;23:449–462.
  • Siggia ED. High Rayleigh number convection. Annu Rev Fluid Mech. 1994;26(1):137–168.
  • Grossman S, Lohse D. Thermal convection for large Prandtl numbers. Phys Rev Lett. 2001;86(15):3316–3319.
  • Ahlers G, Grossmann S, Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev Mod Phys. 2009;81:503–537.
  • Lohse D, Xia KQ. Small-scale properties of turbulent Rayleigh-Bénard convection. Ann Rev Fluid Mech. 2010;42:335–364.
  • Stevens RJ, van der Poel EP, Grossmann S, et al.. The unifying theory of scaling in thermal convection: the updated prefactors. J Fluid Mech. 2013;730:295–308.
  • Stevens RJ, Lohse D, Verzicco R. Sidewall effects in Rayleigh–Bénard convection. J Fluid Mech. 2014;741:1–27.
  • Verzicco R. Turbulent thermal convection in a closed domain: viscous boundary layer and mean flow effects. Eur Phys J B Cond Matt Comp Syst. 2003;35(1):133–141.
  • Shishkina O, Stevens RJ, Grossmann S, et al.. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J Phys. 2010;12:075022.
  • Xia KQ, Sun C, Zhou SQ. Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys Rev E. 2003;68:066303.
  • Daya ZA, Ecke RE. Prandtl-number dependence of interior temperature and velocity fluctuations in turbulent convection. Phys Rev E. 2002;66(4):45301–45305.
  • Verzicco R. Effects of nonperfect thermal sources in turbulent thermal convection. Phys Fluids. 2004;16:1965–1979.
  • Xia KQ, Lam S, Zhou SQ. Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection. Phys Rev Lett. 2002;88:064501.
  • Kaczorowski M, Xia KQ. Turbulent flow in the bulk of Rayleigh–Bénard convection: small-scale properties in a cubic cell. J Fluid Mech. 2013;722:596–617.
  • Kaczorowski M, Chong KL, Xia KQ. Turbulent flow in the bulk of Rayleigh–Bénard convection: aspect-ratio dependence of the small-scale properties. J Fluid Mech. 2014;747:73–102.
  • Oakey NS. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr. 1982;12:256–271.
  • Luznik L, Zhu W, Gurka R, et al.. Distribution of energy spectra, Reynolds stresses, turbulence production, and dissipation in a tidally driven bottom boundary layer. J Phys Oceanogr. 2007;37:1527–1550.
  • Saarenrinne P, Piirto M. Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp Fluids. 2000;29(1):S300–S307.
  • Tennekes H, Lumley J.L. A first course in turbulence. Cambridge, MA: MIT Press; 1972.
  • Spedding G. The evolution of initially turbulent bluff-body wakes at high internal Froude number. J Fluid Mech. 1997;337:283–301.
  • Nash JD, Moum JN. Microstructure estimates of turbulent salinity flux and the dissipation spectrum of salinity. J Phys Oceanogr. 2002;32:2312–2333.
  • Shang XD, Qiu XL, Tong P, Xia KQ. Measured local heat transport in turbulent Rayleigh-Bénard convection. Phys Rev Lett. 2003;90(7):074501–074504.
  • He X, Tong P. Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection. Phys Rev E. 2009;79:026306.
  • Hinze JO. Turbulence: an introduction to its mechanism and theory. New York, NY: McGraw-Hill; 1959.
  • Yeung P, Xu S, Donzis D, et al.. Simulations of three-dimensional turbulent mixing for Schmidt numbers of the order 1000. Flow, Turbulence Combust. 2004;72:333–347.
  • Donzis DA, Sreenivasan K, Yeung P. The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow, Turbulence Combust. 2010;85:549–566.
  • Lagaert JB, Balarac G, Cottet GH, et al., Particle method: an efficient tool for direct numerical simulations of a high Schmidt number passive scalar in turbulent flow. Proc Summer Program. 2012;2012:167–176.
  • Smyth WD. Dissipation-range geometry and scalar spectra in sheared stratified turbulence. J Fluid Mech. 1999;401:209–242.
  • Sanchez X, Roget E, Planella J, et al.. Small-scale spectrum of a scalar field in water: the Batchelor and Kraichnan models. J Phys Oceanogr. 2011;41:2155–2167.
  • Monin AS, Yaglom AM. Statistical fluid mechanics: mechanics of turbulence. Cambridge, MA: MIT press; 1981.
  • Tatarski VI. The effects of the turbulent atmosphere on the wave propagation. Jerusalem: Israel program for Scientific Translation; 1971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.