806
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

&
Pages 75-93 | Received 09 Mar 2015, Accepted 30 Aug 2015, Published online: 19 Oct 2015

References

  • Raupach M, Antonia R, Rajagopalan S. Rough-wall turbulent boundary layers. Appl Mech Rev. 1991;44(1):1–25.
  • Jiménez J. Turbulent flows over rough walls. Annu Rev Fluid Mech. 2004;36:173–196.
  • Schlichting H. Boundary-layer theory. New York, NY: McGraw-hill; 1968.
  • Raupach M, Thom AS. Turbulence in and above plant canopies. Ann Rev Fluid Mech. 1981;13(1):97–129.
  • Finnigan J. Turbulence in plant canopies. Annu Rev Fluid Mech. 2000;32(1):519–571.
  • Britter R, Hanna S. Flow and dispersion in urban areas. Annu Rev Fluid Mech. 2003;35(1):469–496.
  • Monin A. The atmospheric boundary layer. Annu Rev Fluid Mech. 1970;2(1):225–250.
  • Counihan J. Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos Environ. 1975;9(10):871–905.
  • Leonardi S, Cruz Perez B, Lucena J. Effect of surface roughness on heat transfer in a turbulent channel flow. In APS Division of Fluid Dynamics Meeting Abstracts. Vol. 1. 2010.
  • Bons JP. A review of surface roughness effects in gas turbines. J Turbomach. 2010;132(2):021004.
  • Bogard DG, Schmidt DL, Tabbita M. Characterization and laboratory simulation of turbine airfoil surface roughness and associated heat transfer. J Turbomach. 1998;120(2):337–342.
  • Boynton J, Tabibzadeh R, Hudson S. Investigation of rotor blade roughness effects on turbine performance. J Turbomach. 1993;115(3):614–620.
  • Tabor G, Baba-Ahmadi M. Inlet conditions for large eddy simulation: a review. Comput Fluids. 2010;39(4):553–567.
  • Kondo K, Murakami S, Mochida A. Generation of velocity fluctuations for inflow boundary condition of LES. J Wind Eng Ind Aerodyn. 1997;67:51–64.
  • Smirnov A, Shi S, Celik I. Random flow generation technique for large eddy simulations and particle-dynamics modeling. J Fluids Eng. 2001;123(2):359–371.
  • Davidson L. Hybrid les-rans: inlet boundary conditions for flows with recirculation. In Peng S-H, Haase W, editors. Advances in Hybrid RANS-LES Modelling. Berlin, Heidelberg: Springer; 2008. p. 55–66.
  • Druault P, Lardeau S, Bonnet J-P, et al. Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J. 2004;42(3):447–456.
  • Perret L, Delville J, Manceau R, et al. Generation of turbulent inflow conditions for large eddy simulation from stereoscopic PIV measurements. Int J Heat Fluid Flow. 2006;27(4):576–584.
  • Johansson PS, Andersson HI. Generation of inflow data for inhomogeneous turbulence. Theor Comput Fluid Dyn. 2004;18(5):371–389.
  • Di Mare L, Klein M, Jones W, et al. Synthetic turbulence inflow conditions for large-eddy simulation. Phys Fluids. 2006;18(2):025107.
  • Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys. 2003;186(2):652–665.
  • Xie Z-T, Castro IP. Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow, Turbulence Combust. 2008;81(3):449–470.
  • Jarrin N, Benhamadouche S, Laurence D, et al. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int J Heat Fluid Flow. 2006;27(4):585–593.
  • Schlüter J, Pitsch H, Moin P. Large-eddy simulation inflow conditions for coupling with reynolds-averaged flow solvers. AIAA J. 2004;42(3):478–484.
  • Wang P, Bai X-S, Wessman M, et al. Large eddy simulation and experimental studies of a confined turbulent swirling flow. Phys Fluids. 2004;16(9):3306–3324.
  • Lund TS, Wu X, Squires KD. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J Comput Phys. 1998;140(2):233–258.
  • Spalart PR, Watmuff JH. Experimental and numerical study of a turbulent boundary layer with pressure gradients. J Fluid Mech. 1993;249:337–371.
  • Stevens RJ, Graham J, Meneveau C. A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms. Renew Energy. 2014;68:46–50.
  • Nozawa K, Tamura T. Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J Wind Eng Ind Aerodyn. 2002;90(10):1151–1162.
  • Schlichting H, Gersten K. Boundary-layer theory. Berlin, Heidelberg: Springer; 2000.
  • Araya G, Castillo L, Meneveau C, et al. A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially developing flows. J Fluid Mech. 2011;670:581–605.
  • Anderson W, Meneveau C. Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces. J Fluid Mech. 2011;679:288–314.
  • Perry AE, Schofield WH, Joubert PN. Rough wall turbulent boundary layers. J Fluid Mech. 1969;37(2):383–413.
  • Tani I. Some equilibrium turbulent boundary layers. Fluid Dyn Res. 1986;1(1):49.
  • Lee JH, Sung HJ, Krogstad P-Å. Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J Fluid Mech. 2011;669:397–431.
  • Ahn J, Lee JH, Sung HJ. Statistics of the turbulent boundary layers over 3d cube-roughened walls. Int J Heat Fluid Flow. 2013;44:394–402.
  • Castro IP. Rough-wall boundary layers: mean flow universality. J Fluid Mech. 2007;585:469–485.
  • Placidi M, Ganapathisubramani B. Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J Fluid Mech. 2015 ( in press).
  • Raupach M, Shaw R. Averaging procedures for flow within vegetation canopies. Bound-Layer Meteorol. 1982;22(1):79–90.
  • Raupach M, Coppin P, Legg B. Experiments on scalar dispersion within a model plant canopy part i: the turbulence structure. Bound-Layer Meteorol. 1986;35(1–2):21–52.
  • Poggi D, Katul GG. The effect of canopy roughness density on the constitutive components of the dispersive stresses. Exp Fluids. 2008;45(1):111–121.
  • Coceal O, Thomas TG, Belcher SE. Spatial variability of flow statistics within regular building arrays. Bound-layer Meteorol. 2007;125(3):537–552.
  • Moltchanov S. Dispersive stresses in canopy flows [PhD thesis]. Haifa, Israel: Technion-Israel Institute of Technology, Faculty of Civil and Environmental Engineering; 2013.
  • Hong J, Katz J, Meneveau C, et al. Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow. J Fluid Mech. 2012;712:92–128.
  • Meneveau C, Lund TS, Cabot WH. A lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech. 1996;319:353–385.
  • Yang X, Sadique J, Mittal R, et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys Fluids. 2015;27(2):025112.
  • Mittal R, Dong H, Bozkurttas M, et al. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys. 2008;227(10):4825–4852.
  • Vreman B, Geurts B, Kuerten H. On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids. 1994;6(12):4057–4059.
  • You D, Moin P. A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Phys Fluids. 2007;19(6):065110.
  • Mittal R, Iaccarino G. Immersed boundary methods. Annu Rev Fluid Mech. 2005;37:239–261.
  • Smalley R, Antonia R, Djenidi L. Self-preservation of rough-wall turbulent boundary layers. Eur J Mech-B/Fluids. 2001;20(5):591–602.
  • Marusic I, Kunkel GJ. Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys Fluids. 2003;15(8):2461–2464.
  • Marusic I, Monty JP, Hultmark M, et al. On the logarithmic region in wall turbulence. J Fluid Mech. 2013;716:R3.
  • Meneveau C, Marusic I. Generalized logarithmic law for high-order moments in turbulent boundary layers. J Fluid Mech. 2013;719:R1.
  • Hultmark M, Vallikivi M, Bailey S, et al. Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett. 2012;108(9):094501.
  • Stevens RJ, Wilczek M, Meneveau C. Large-eddy simulation study of the logarithmic law for second-and higher-order moments in turbulent wall-bounded flow. J Fluid Mech. 2014;757:888–907.
  • Cheng H, Castro IP. Near wall flow over urban-like roughness. Bound-Layer Meteorol. 2002;104(2):229–259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.