552
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Helical modes in low- and high-swirl jets measured by tomographic PIV

, , , , &
Pages 678-698 | Received 31 Dec 2015, Accepted 22 Mar 2016, Published online: 09 Jun 2016

References

  • Gupta AK, Lilley DG, Syred N. Swirl flows. Kent: Abacus Press; 1984.
  • Billant P, Chomaz J, Huerre P. Experimental study of vortex breakdown in swirling jets. J Fluid Mech. 1998;376:183–219.
  • Leibovich S. The structure of vortex breakdown. Annu Rev Fluid Mech. 1978;10:221–246
  • Lucca-Negro O, O'Doherty T. Vortex breakdown: a review. Prog Energy Combust Sci. 2001;27:431–481.
  • Oberleithner K, Paschereit CO, Seele R, et al. Formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA J. 2012;50:1437–1452.
  • Oberleithner K, Sieber M, Nayeri CN, et al. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech. 2011;679:383–414.
  • Syred N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci. 2006;32:93–161.
  • Syred N, Beer J. The damping of precessing vortex cores by combustion in swirl generators. Astronautica Acta. 1972;17:783–801.
  • Syred N, Fick W, O'Doherty T, et al. The effect of the recessing vortex core on combustion in a swirl burner. Combust Sci Technol. 1997;125:139–157.
  • Cala CE, Fernandes EC, Heitor MV, et al. Coherent structures in unsteady swirling jet flow. Exp Fluids. 2006;40:267–276.
  • Liang H, Maxworthy T. An experimental investigation of swirling jets. J Fluid Mech. 2005;525:115–159.
  • Oberleithner K, Paschereit CO, Wygnanski I. On the impact of swirl on the growth of coherent structures. J Fluid Mech. 2014;741:156–199.
  • Varaksin AY, Romash ME, Kopeitsev VN. Effect of net structures on wall-free non-stationary air heat vortices. Int J Heat Mass Transfer. 2013;64:817–828.
  • Ruith MR, Chen P, Meiburg E, et al. Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech. 2003;486:331–378.
  • Pasche S, Gallaire F, Dreyer M, et al. Obstacle-induced spiral vortex breakdown. Exp Fluids. 2014;55:1784.
  • Brücker C. Study of vortex breakdown by particle tracking velocimetry (PTV), part 2: spiral-type vortex breakdown. Exp Fluids. 1993;14:133–139.
  • Stöhr M, Boxx I, Carter CD, et al. Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust Flame. 2012;159:2636–2649.
  • Terhaar S, Reichel TG, Schrödinger C, et al. Vortex breakdown types and global modes in swirling combustor flows with axial injection. J Propulsion Power. 2014;31:219–229.
  • Ceglia G, Discetti S, Ianiro A, et al. Three-dimensional organization of the flow structure in a non-reactive model aero engine lean burn injection system. Exp Therm Fluid Sci. 2014;52:164–173.
  • González-Martínez E, Lázaro BJ. On the coherent modes of high Reynolds number, strongly swirling jets discharging in compact enclosures. Part A: mean flow structure and coherent mode processing description. Aerosp Sci Technol. 2015;44:18–31.
  • González-Martínez E, Lázaro BJ. On the coherent modes of high Reynolds number, strongly swirling jets discharging in compact enclosures. Part B: coherent flow structure. Aerosp Sci Technol. 2015;44:32–42.
  • Lieuwen T. Unsteady combustor physics. New York: Cambridge University Press; 2012.
  • Gallaire F, Chomaz J-M. Mode selection in swirling jet experiments: a linear stability analysis. J Fluid Mech. 2003;494:223–253.
  • Alekseenko SV, Dulin VM, Kozorezov YS, et al. Effect of high-amplitude forcing on turbulent combustion intensity and vortex core precession in a strongly swirling lifted propane/air flame. Combust Sci Technol. 2012;184:1862–1890.
  • Johnson MR, Littlejohn D, Nazeer WA, et al. A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc Combust Inst. 2005;30:2867–2874.
  • Markovich DM, Abdurakipov SS, Chikishev LM, et al. Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys Fluids. 2014;26:065109.
  • Brücker C, Althaus W. Study of vortex breakdown by particle tracking velocimetry (PTV), part 1: bubble-type vortex breakdown. Exp Fluids. 1992;14:339–349
  • Brücker C, Althaus W. Study of vortex breakdown by particle tracking velocimetry (PTV), part 3: time-dependent structure and development of breakdown-modes. Exp Fluids. 1995;18:174–186
  • Elsinga GE, Scarano F, Wieneke B, et al. Tomographic particle image velocimetry. Exp Fluids. 2006;41:933–947
  • Scarano F. Tomographic PIV: principles and practice. Meas Sci Technol. 2013;24:012001.
  • Spall RE. Transition from spiral‐to bubble‐type vortex breakdown. Phys Fluids. 1996;8:1330–1332.
  • Alekseenko SV, Dulin VM, Kozorezov YS, et al. Effect of axisymmetric forcing on the structure of a swirling turbulent jet. Int J Heat Fluid Flow. 2008;29:1699–1715.
  • Van Slooten PR, Pope SB. Application of PDF modeling to swirling and nonswirling turbulent jets. Flow. Turbulence Combust. 1999;62:295–333.
  • Wieneke B. Volume self-calibration for 3D particle image velocimetry. Exp Fluids. 2008;45:549–456.
  • Atkinson CH, Soria J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids. 2009;47:553–568.
  • Sciacchitano A, Scarano F, Wieneke B. Multi-frame pyramid correlation for time-resolved PIV. Exp Fluids. 2012;53:1087–1105
  • Scarano F. Iterative image deformation methods in PIV. Meas Sci Technol. 2002;13:R1–R19.
  • Alekseenko MV, Bilsky AV, Dulin VM, et al. Diagnostics of jet flows by using tomographic particle image velocimetry. Optoelectron, Instrumen Data Proc. 2014;50:457–465.
  • Violato D, Scarano F. Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys Fluids. 2011;23:124104.
  • Elsinga GE, Westerweel J, Scarano F, et al. On the velocity of ghost particles and the bias errors in tomographic-PIV. Exp Fluids. 2011;40:825–838
  • Hunt JCR, Wray AA, Moin P. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report, CTR-S88; 1988, p. 193–208.
  • Sirovich L. Turbulence and the dynamics of coherent structures Part I: coherent structures. Quart Appl Math. 1987;XLV:561–571.
  • Holmes P, Lumley JL, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge: Cambridge University Press; 1998.
  • Kerschen G, Golinval JC, Vakakis AF, et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 2005;41:147–169.
  • Violato D, Scarano F. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown. Phys Fluids. 2013;25:015112.
  • Rukes L, Sieber M, Paschereit CO, et al. Effect of initial vortex core size on the coherent structures in the swirling jet near field. Exp Fluids. 2015;56:1–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.