1,229
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Predictions of canonical wall-bounded turbulent flows via a modified k–ω equation

, &
Pages 1-35 | Received 06 Jun 2016, Accepted 21 Sep 2016, Published online: 13 Oct 2016

References

  • Smits AJ, Marusic I. Wall-bounded turbulence. Phys Today. 2013;66:25.
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Davidson P. Turbulence: an introduction for scientists and engineers. Oxford: Oxford University Press; 2004.
  • Marusic I, McKeon BJ, Monkewitz PA, et al. Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids. 2010;22:065103.
  • Smits AJ, McKeon BJ, Marusic I. High-Reynolds number wall turbulence. Annu Rev Fluid Mech. 2011;43:353–375.
  • Spalart P. Turbulence. Are we getting smarter. In: Fluid Dynamics Award Lecture, 36th Fluid Dynamics Conference and Exhibit; San Francisco (CA); 2006. p. 5–8.
  • Alfredsson PH, Imayamaa S, Lingwood RJ, et al. Turbulent boundary layers over flat plates and rotating disks - the legacy of von Karman: a stockholm perspective. Eur J Mech B-Fluids. 2013;40:17–29.
  • Segalini A, Orlu R, Alfredsson PH. Uncertainty analysis of the von Karman constant. Exp Fluids. 2013;54:1460.
  • Zagarola MV, Smits AJ. Mean-flow scaling of turbulent pipe flow. J Fluid Mech. 1998;373:33–79.
  • McKeon BJ, Li J, Jiang W, et al. Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech. 2004;501:135–147.
  • Marusic I, Monty JP, Hultmark M, et al. On the logarithmic region in wall turbulence. J Fluid Mech. 2013;716:R3.
  • Nagib HM, Chauhan KA. Variations of von Karman coefficient in canonical flows. Phys Fluids. 2008;20:101518.
  • Monkewitz PA, Chauhan KA, Nagib HM. Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys Fluids. 2007;19:115101.
  • Monkewitz PA, Chauhan KA, Nagib HM. Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers. Phys Fluids. 2008;20:105102.
  • She ZS, Wu Y, Chen X, et al. A multi-state description of roughness effects in turbulent pipe flow. New J Phys. 2012;14:093054.
  • Wu Y, Chen X, She ZS, et al. On the Karman constant in turbulent channel flow. Phys Scripta. 2013;2013:014009.
  • Wilcox DC. Turbulence modeling for CFD. Lake Arrowhead (CA): DCW Industries; 2006.
  • Hultmark M, Vallikivi M, Bailey SCC, et al. Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett. 2012;108:094501.
  • Morrison JF, Mckeon BJ, Jiang W, et al. Scaling of the streamwise velocity component in turbulent pipe flow. J Fluid Mech. 2004;508:99–131.
  • Vallikivi M, Hultmark M, Smits A. Turbulent boundary layer statistics at very high Reynolds number. J Fluid Mech. 2015;779:371–389.
  • Nickels TB. Inner scaling for wall-bounded flows subject to large pressure gradients. J Fluid Mech. 2004;521:217–239.
  • Del Alamo J, Jimenez J. Linear energy amplification in turbulent channels. J Fluid Mech. 2006;559:205–213.
  • Panton RL. Composite asymptotic expansions and scaling wall turbulence. Phil Trans R Soc A. 2007;365:733–754.
  • L’vov VS, Procaccia I, Rudenko O. Universal model of finite Reynolds number turbulent flow in channels and pipes. Phys Rev Lett. 2008;100:054504.
  • Townsend AA. The structure of turbulent shear flow. 2nd ed. Cambridge: Cambridge University Press; 1976.
  • Perry AE, Henbest S, Chong MS. A theoretical and experimental study of wall turbulence. J Fluid Mech. 1986;165:163–199.
  • Marusic I, Kunkel GJ. Streamwise turbulent intensity formulation for flat plate boundary layers. Phys Fluids. 2003;15:2461.
  • Smits AJ. High Reynolds number wall-bounded turbulence and a proposal for a new eddy-based model. In: Deville M, Le TH, Sagaut P, editors. Turbulence and interations. Berlin: Springer-Verlag; 2010. p. 51–62.
  • Alfredsson PH, Segalini A, Orlu R. A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the outer peak. Phys Fluids. 2011;23:041702.
  • Alfredsson PH, Orlu R, Segalini A. A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows. Eur J Mech B-Fluids. 2012;36:167–175.
  • Vassilicos JC, Laval JP, Foucaut JM, et al. The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow. J Fluid Mech. 2015;774:324–341.
  • Kolmogorov AN. The equation of turbulent motion in an incompressible viscous fluid. Izv Akad Nauk SSSR. 1942;VI:56–58.
  • Saffman PG. A model for inhomogeneous turbulent flow. Proc R Soc Lond. 1970;A317:417–433.
  • Saffman PG, Wilcox DC. Turbulence-model predictions for turbulent boundary layers. AIAA J. 1974;12:541–546.
  • Wilcox DC. Reassessment of the scale determining equation for advanced turbulent models. AIAA J. 1988;26:1299–1310.
  • She ZS, Chen X, Wu Y, et al. New perspective in statistical modeling of wall-bounded turbulence. Acta Mech Sinica. 2010;26:847–861.
  • Coles D. The law of the wake in the turbulent boundary layer. J Fluid Mech. 1956;1:191–226.
  • Wu XH, Moin P. A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech. 2008;608:81–112.
  • Ahn J, Lee J, Lee J, et al. Direct numerical simulation of a 30R long turbulent pipe flow at Re = 3008. Phy Fluids. 2015;27:065110.
  • Monty JP, Hutchins N, Ng HCH, et al. A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech. 2009;632:431–442.
  • Carlier J, Stanislas M. Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J Fluid Mech. 2005;535:143–188.
  • Hutchins N, Nickels TB, Marusic I, et al. Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech. 2009;635:103–136.
  • Nickels TB, Marusic I, Hafez S, et al. Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil Trans R Soc. A 2007;365:807–822.
  • Chen X, Wei BB, Hussain F, et al. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers. Phys Rev E. 2015;93:011102(R).
  • Kadanoff LP. More is the same; phase transitions and mean field theories. J Stat Phys. 2009;137:777–797.
  • Lee M, Moser R. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J Fluid Mech. 2015;774:395–415.
  • Barenblatt GI. Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J Fluid Mech. 1993;248:513–520.
  • Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences. Hampton (VA): NASA Langley Research Center; 2014. (Report no. NASA/CR 218178).
  • Oweis G, Winkel E, Cutbrith J, et al. The mean velocity profile of a smooth-flat-plate turbulent boundary layer at high Reynolds number. J Fluid Mech. 2010;665:357–381.