1,173
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

&
Pages 373-389 | Received 13 Oct 2016, Accepted 13 Jan 2017, Published online: 31 Jan 2017

References

  • Dabiri JO. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J Renew Sustain Energy. 2011; 3: 043104.
  • Kinzel M, Mulligan Q, Dabiri JO. Energy exchange in an array of vertical-axis wind turbines. J Turbul. 2012; 13: 1–13.
  • Shamsoddin S, Porté-Agel F. Large eddy simulation of vertical axis wind turbine wakes. Energies. 2014; 7: 890–912.
  • Dabiri JO, Greer JR, Koseff JR, et al. A new approach to wind energy: opportunities and challenges. AIP Conf Proc. 2015; 1652: 51–57.
  • Bachant P, Wosnik M. Characterising the near-wake of a cross-flow turbine. J Turbul. 2015; 16: 392–410.
  • Bremseth J, Duraisamy K. Computational analysis of vertical axis wind turbine arrays. Theor Comp Fluid Dyn. 2016:1–15.
  • Xie S, Archer CL, Ghaisas N, et al. Benefits of collocating vertical-axis and horizontal-axis wind turbines in large wind farms. Wind Energy. 2017; 20: 45–62.
  • Paraschivoiu I. Wind turbine design–with emphasis on Darrieus concept. Montreal: Polytechnic International Press; 2002.
  • Araya DB, Craig AE, Kinzel M, et al. Low-order modeling of wind farm aerodynamics using leaky Rankine bodies. J Renew Sustain Energy. 2014; 6: 063118.
  • Brochier G, Fraunie P, Beguier C, et al. Water channel experiments of dynamic stall on Darrieus wind turbine blades. AIAA J Propul Power. 1986; 2: 445–449.
  • Bergeles G, Michos A, Athanassiadis N. Velocity vector and turbulence in the symmetry plane of a darrieus wind generator. J Wind Eng Ind Aerodyn. 1991; 37: 87–101.
  • Battisti L, Zanne L, Dell’Anna S, et al. Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel. J Energy Resour Technol. 2011;133(3):031201.
  • Araya DB, Dabiri JO. A comparison of wake measurements in motor-driven and flow-driven turbine experiments. Exp Fluids. 2015; 56: 1–15.
  • Marsh P, Ranmuthugala D, Penesis I, et al. Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces. Renew Energy. 2015; 83: 67–77.
  • Posa A, Parker CM, Leftwich MC, et al. Wake structure of a single vertical axis wind turbine. Int J Heat Fluid Flow. 2016; 61: 75–84.
  • Lam H, Peng H. Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations. Renew Energy. 2016; 90: 386–398.
  • Chowdhury AM, Akimoto H, Hara Y. Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration. Renew Energy. 2016; 85: 327–337.
  • Rajagopalan RG, Fanucci JB. Finite difference model for vertical-axis wind turbines. AIAA J Propul Power. 1985; 1: 432–436.
  • Patankar S. Numerical heat transfer and fluid flow. New York (NY): McGraw Hill; 1980.
  • Shen W, Zhang J, Sørensen J. The actuator surface model: a new Navier–Stokes based model for rotor computations. J Solar Energy Eng. 2009; 131: 011002.
  • Hezaveh SH, Bou-Zeid E, Lohry MW, et al. Simulation and wake analysis of a single vertical axis wind turbine. Wind Energy. 2016. Available from: http://dx.doi.org/10.1002/we.2056
  • Rozema W, Bae HJ, Moin P, et al. Minimum-dissipation models for large-eddy simulation. Phys Fluids. 2015; 27: 085107.
  • Abkar M, Bae HJ, Moin P. Minimum dissipation scalar transport model for large-eddy simulation of turbulent flows. Phys Rev Fluids. 2016; 1: 041701.
  • Verstappen R, Bose S, Lee J, et al. A dynamic eddy-viscosity model based on the invariants of the rate-of-strain. In: Proceedings of the Summer Program; Stanford: Center for Turbulence Research, Stanford University; 2010. p. 183–192.
  • Verstappen R, Rozema W, Bae H. Numerical scale separation in large-eddy simulation. Proceedings of the Summer Program; Stanford: Center for Turbulence Research, Stanford University; 2014. p. 417–426.
  • Noll RB, Ham ND. Dynamic stall of small wind systems. Burlington, MA: Aerospace Systems Inc.; 1983.
  • Shamsoddin S, Porté-Agel F. A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer. Energies. 2016;9(5):366.
  • Glauert H. Airplane propellers. Aerodynamic theory. Berlin Heidelberg: Springer; 1935. p. 169–360.
  • Bachant P, Goude A, Wosnik M. Actuator line modeling of vertical-axis turbines. arXiv preprint arXiv:1605.01449. 2016.
  • Sørensen JN, Shen W. Numerical modeling of wind turbine wakes. J Fluids Eng. 2002; 124: 393–399.
  • Canuto C, Hussaini M, Quarteroni A, et al. Spectral methods in fluid dynamics. Berlin: Springer; 1988.
  • Tseng YH, Meneveau C, Parlange MB. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ Sci Technol. 2006; 40: 2653–2662.
  • Abkar M, Porté-Agel F. A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions. J Turbul. 2012; 13: 1–18.
  • Munters W, Meneveau C, Meyers J. Turbulent inflow precursor method with time-varying direction for large-eddy simulations and applications to wind farms. Boundary Layer Meteorol. 2015:1–24.
  • Abkar M, Sharifi A, Porté-Agel F. Wake flow in a wind farm during a diurnal cycle. J Turbul. 2016:1–22.
  • Moeng C. A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci. 1984; 46: 2311–2330.
  • Bou-Zeid E, Meneveau C, Parlange M. A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids. 2005; 17: 025105.
  • Kumar V, Paraschivoiu M, Paraschivoiu I. Low Reynolds number vertical axis wind turbine for mars. Wind Eng. 2010; 34: 461–476.
  • Ferreira CJS, van Bussel GJ, van Kuik GA. Wind tunnel hotwire measurements, flow visualization and thrust measurement of a VAWT in skew. J Solar Energy Eng. 2006; 128: 487–497.
  • Rolin V, Porté-Agel F. Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry. J Phys Conf Ser. 2015; 625: 012012.
  • Parker CM, Leftwich MC. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers. Exp Fluids. 2016; 57: 1–11.
  • Kang S, Yang X, Sotiropoulos F. On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J Fluid Mech. 2014; 744: 376–403.
  • Möllerström E, Ottermo F, Hylander J, et al. Noise emission of a 200 kW vertical axis wind turbine. Energies. 2015; 9: 19.
  • Möllerström E. Vertical axis wind turbines: tower dynamics and noise [master's thesis]. Uppsala University; 2015.
  • Sheldahl R, Klimas P. Aerodynamic characteristics of seven airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Albuquerque (NM): Sandia National Laboratories; 1981. (Report SAND80-2114).
  • Araya DB, Colonius T, Dabiri JO. Transition to bluff body dynamics in the wake of vertical-axis wind turbines. J Fluid Mech. Forthcoming 2016.
  • Ryan KJ, Coletti F, Elkins CJ, et al. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine. Exp Fluids. 2016; 57: 1–15.
  • Tennekes H, Lumley JL. A first course in turbulence. Cambridge (MA): MIT Press; 1972.
  • Pope S. Turbulent flows. New York (NY): Cambridge University Press; 2000.
  • Thomas FO, Liu X. An experimental investigation of symmetric and asymmetric turbulent wake development in pressure gradient. Phys Fluids. 2004; 16: 1725–1745.
  • Bastankhah M, Porté-Agel F. A new analytical model for wind-turbine wakes. Renew Energy. 2014;70:116–123.
  • Abkar M, Porté-Agel F. Influence of atmospheric stability on wind turbine wakes: a large-eddy simulation study. Phys Fluids. 2015; 27: 035104.
  • Xie S, Archer C. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy. 2015; 18: 1815–1838.
  • Frandsen S, Barthelmie R, Pryor S, et al. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy. 2006; 9: 39–53.
  • Abkar M, Porté-Agel F. Influence of the Coriolis force on the structure and evolution of wind turbine wakes. Phys Rev Fluids. 2016; 1: 063701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.