370
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Reynolds stress models applied to canonical shock-turbulence interaction

&
Pages 653-687 | Received 26 Sep 2016, Accepted 29 Mar 2017, Published online: 28 Apr 2017

References

  • Zheltovodov AA. Some advances in research of shock wave turbulent boundary layer interactions. AIAA Paper. 2006;496:1–25.
  • Roy CJ, Blottner FG. Review and assessment of turbulence models for hypersonic flows. Prog Aerosp Sci. 2006;42:469–530.
  • Gaitonde D. Progress in shock wave/boundary layer interactions. Prog Aerosp Sci. 2015;72:80–99.
  • Morgan B, Duraisamy K, Nguyen N, et al. Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J Fluid Mech. 2013; 79: 231–284.
  • Hamlington PE, Dahm WJA. Reynolds stress closure for nonequilibrium effects in turbulent flows. Phys Fluids. 2008;20:1151101.
  • Vieira RF, Azevedo JLF. Turbulence model assessment for simulation of shock waveboundary layer interaction flows. In: 31st AIAA Applied aerodynamics conference, Fluid Dynamics and Co-located Conferences. 2013 June 24–27, San Dieago, CA, 2013; p. 3024.
  • Liu J, Zhao Z. Reynolds-stress turbulence models for hypersonic shockwave/turbulent-boundary-layer interactions. In: AIAA SPACE 2014 conference and exposition, AIAA SPACE Forum; 2014 Aug 4–7; San Diego, CA, 2014; p. 4413.
  • Sinha K, Mahesh K, Candler GV. Modeling the effect of shock unsteadiness in shock/turbulent boundary layer interactions. AIAA J. 2005;43:586–594.
  • Larsson J, Lele SK. Direct numerical simulation of canonical shock / turbulence interaction. Phys Fluids. 2009;21:126101.
  • Larsson J, Bermejo-Moreno I, Lele SK. Reynolds- and Mach-number effects in canonical shock-turbulence interaction. J Fluid Mech. 2013;717:293–321.
  • Mahesh K, Lele SK, Moin P. The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J Fluid Mech. 1997;334:353–379.
  • Durbin PA, Zemen O. Rapid distortion theory for homogeneous compressed turbulence with application to modelling. J Fluid Mech. 1992;242:349–370.
  • Wouchuk J, Huete Ruiz de Lira C, Velikovich A. Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys Rev E. 2009;79:066315.
  • Sinha K, Mahesh K, Candler GV. Modeling shock unsteadiness in shock/turbulence interaction. Phys Fluids. 2003;15:2290.
  • Sinha K. Evolution of enstrophy in shock/homogeneous turbulence interaction. J Fluid Mech. 2012;707:74–110.
  • Veera VK, Sinha K. Modeling the effect of upstream temperature fluctuations on shock/homogeneous turbulence interaction. Phys Fluids. 2009;2:025101.
  • Pasha AA, Sinha K. Shock-unsteadiness model applied to oblique shock wave/turbulent boundary layer interaction. Int J Comput Fluid Dyn. 2008;22:569–582.
  • Pasha AA, Sinha K. Simulation of hypersonic shock/turbulent boundary-layer interactions using shock-unsteadiness model. J Propul Power. 2012;28:46–60.
  • Rotta JC. Statistich theorie nichthomogener turbulenz I. Z Phys. 1951;129:547–573.
  • Launder BE, Reece GJ, Rodi W. Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech. 1975;68:537–566.
  • Lumley JL. Turbulence modeling. Adv Appl Mech. 1978;18.
  • Speziale CG, Sarkar S, Gatski TB. Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J Fluid Mech. 1991;227:245–272.
  • Gibson MM, Launder BE. Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech. 1978;86:491–511.
  • Launder BE, Shima N. Second-moment closure for the near-wall sublayer : development and application. AIAA J. 1989;27:1319–1325.
  • Gerolymos GA, Sauret E, Vallet I. Contribution to the single-point-closure Reynolds-stress modelling of inhomogeneous flow. Theor Comput Fluid Dyn. 2004;17:407–431.
  • Gerolymos GA, Vallet I. Wall-normal-free near-wall Reynolds-stress closure for 3-D compressible separated flows. AIAA J. 2001;39:1833–1842.
  • Gerolymos GA, Lo C, Vallet Iet al,. Term-by-term analysis of near-wall second moment closures. AIAA J. 2012;50:2848–2864.
  • Gerolymos GA, Sauret E, Vallet I. Oblique-shock-wave/boundary-layer interaction using near-wall reynolds stress models. AIAA J. 2004;42:1089–1100.
  • Launder BE, Sharma BI. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transfer. 1974;1:131–137.
  • Gerolymos GA, Vallet I. Near-wall Reynolds stress three dimensional transonic flow computation. AIAA J. 1997;35:228–236.
  • Sauret E, Vallet I. Near-wall turbulent pressure diffusion modelling and influence in 3-D secondary flows. ASME J Fluids Eng. 2007;129:634–642.
  • Vallet I. Reynolds-stress modelling of M= 2.25 shock-wave/turbulent-boundary-layer interaction. Int J Numer Methods Fluids. 2008;56:525–555.
  • Lee J, Taulbee DB, Holden MS. Study of turbulence on supersonic compression surfaces using Reynolds stress model. AIAA J. 1992;30:1738–1746.
  • Ladiende F. Supersonic flux-split procedure for second moments of turbulence. AIAA J. 1995;33:1185–1195.
  • Gnedin M, Knight D. A Reynolds stress equation turbulence model for compressible flows, Part-I: flat plate boundary layers. In: 33rd Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meeting; 1995 Jan 9–12. Reno, NY.
  • Pantano C, Sarkar S. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J Fluid Eng. 2002;451:329–371.
  • Zeman O. Dilatational dissipation: the concept and application in modeling compressible mixing layers. Phys Fluids A. 1992;2:178–188.
  • Zha GC, Knight D. Three-dimensional shock / boundary-layer interaction using Reynolds stress equation turbulence model. AIAA J. 1996;34:1313–1320.
  • Wilcox DC. Turbulence modelling for CFD. California, USA; DCW Industries. Inc.; 2010.
  • Daly BJ, Harlow FH. Transport equations in turbulence. Phys Fluids. 1970;13:2635–2649.
  • Souffland D, Soulard O, Griffond J. Modeling of Reynolds stress models for diffusion fluxes inside shock waves. J Fluid Eng. 2014;136:091102-1–091102-4.
  • Johnson BM, Schilling O. Reynolds-averaged Navier-Stokes model predictions of linear instability.II.shock-driven. J Turbul. 2011;12:1–31.
  • Griffond J, Olivier S. Evaluation of augmented RSM for interaction of homogeneous turbulent mixture with shock and rarefraction waves. J Turbul. 2014;15:569–595.
  • Sinha K, Singh R. Numerical error in the k − ε turbulence model applied to eddy-viscous shock waves. AIAA J. 2016;54:3673–3678.
  • Sinha K, Balasridhar SJ. Conservative formulation of the k − ε turbulence model for shock-turbulence interaction. AIAA J. 2013;51:1872–1882.
  • Raje P, Sinha K. A physically consistent and numerically robust k − ε model for computing turbulent flows with shock waves. Comput Fluids. 2016;136:35–47.
  • Quadros R, Sinha K, Larsson J. Turbulent energy flux generated by shock/homogeneous-turbulence interaction. J Fluid Mech. 2016;796:113–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.