4,390
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow

&
Pages 717-759 | Received 10 Nov 2016, Accepted 08 Apr 2017, Published online: 02 May 2017

References

  • White CM, Mungal MG. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu Rev Fluid Mech. 2008;40:235–256.
  • Ceccio SL. Friction drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech. 2010;42:183–203.
  • Kametani Y, Fukagata K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J Fluid Mech. 2011;681:154–172.
  • Yoon HS, El-Samni OA, Chun HH. Drag reduction in turbulent channel flow with periodically arrayed heating and cooling strips. Phys Fluids (1994-present). 2006;18(2):025104.
  • Kametani Y, Fukagata K. Direct numerical simulation of spatially developing turbulent boundary layer for skin friction drag reduction by wall surface-heating or cooling. J Turbul. 2012;13(34):1–20.
  • Vakarelski IU, Chan DYC, Thoroddsen ST. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water. Soft Matter. 2014;10:5662–5668.
  • Quadrio M. Drag reduction in turbulent boundary layers by in-plane wall motion. Phil Tran R Soc A Mat Phys Eng Sci. 2011;369(1940):1428–1442.
  • Tomiyama N, Fukagata K. Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys Fluids (1994-present). 2013;25(10):105115.
  • Shatrov V, Gerbeth G. Magnetohydrodynamic drag reduction and its efficiency. Phys Fluids (1994-present). 2007;19(3):035109.
  • Rothstein JP. Slip on superhydrophobic surfaces. Annu Rev Fluid Mech. 2010;42:89–109.
  • Choi K-S, Yang X, Clayton BR, et al. Proc R Soc A Mat Phys Eng Sci. 1997;453(1965):2229–2240.
  • Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil Trans R Soc A: Mat Phys Eng Sci. 2010;368(1929):4775–4806.
  • Fransson JHM, Talamelli A, Brandt L, et al. Delaying transition to turbulence by a passive mechanism. Phys Rev Lett. 2006;96(6):064501.
  • Choi Jin, Jeon WP, Choi H. Mechanism of drag reduction by dimples on a sphere. Phys Fluids (1994-present). 2006;18(4):041702.
  • Son K, Choi J, Jeon WP, et al. Mechanism of drag reduction by a surface trip wire on a sphere. J Fluid Mech. 2011;672:411–427.
  • Abe K, Matsumoto A, Munakata H, et al. Drag reduction by sand grain roughness. In: Gyr A, editor. Structure of turbulence and drag reduction. Berlin Heidelberg: Springer; 1990. p. 341–348.
  • Wahidi R, Chakroun W, Al-Fahed S. The behavior of the skin-friction coefficient of a turbulent boundary layer flow over a flat plate with differently configured transverse square grooves. Exp Ther Fluid Sci. 2005;30(2):141–152.
  • Abdulbari HA, Yunus RM, Abdurahman NH, Charles A. Going against the flow—A review of non-additive means of drag reduction. J Ind Eng Chem. 2013;19(1):27–36.
  • Sagong W, Kim C, Choi S, et al. Does the sailfish skin reduce the skin friction like the shark skin? Phys Fluids (1994-present). 2008;20(10):101510.
  • Díez G, Soto M, Blanco JM. Biological characterization of the skin of shortfin mako shark Isurus oxyrinchus and preliminary study of the hydrodynamic behaviour through computational fluid dynamics. J Fish Biol. 2015;87(1):123–137.
  • Bechert DW, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech. 1997;338(5):59–87.
  • Wilkinson SP, Anders JB, Lazos BS, et al. Turbulent drag reduction research at NASA Langley: progress and plans. Int J Heat Fluid Flow. 1988;9(3):266–277.
  • Li W, Jessen W, Roggenkamp D, et al. Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur J Mech-B/Fluids. 2015;53:101–112.
  • Wassen E., Kramer F, Thiele F, et al. Turbulent drag reduction by oscillating riblets. In Proceedings of the 4th AIAA Flow Control Conference, volume 2; Jun 23–26; Seattle, WA; 2008. p. 740–754.
  • Grüneberger R, Kramer F, Hage W, et al. Experimental investigation of oscillating riblets for turbulent drag reduction. In: Dillmann A, Heller G, Kreplin H-P, Nitsche W, Peltzer I, editors. New results in numerical and experimental fluid mechanics VIII, volume 121 of notes on numerical fluid mechanics and multidisciplinary design. Springer Berlin Heidelberg; 2013. p. 193–200. ISBN 978-3-642-35679-7.
  • Vodop’yanov IS , Nikitin NV, Chernyshenko SI. Turbulent drag reduction by spanwise oscillations of a ribbed surface. Fluid Dyn. 2013;48(4):461–470.
  • Grüneberger R, Kramer F, Wassen E, et al. Influence of wave-like riblets on turbulent friction drag. In: Tropea C, Bleckmann H, editors. Nature-inspired fluid mechanics. Berlin Heidelberg: Springer; 2012. p. 311–329.
  • Sasamori M, Mamori H, Iwamoto K, et al. Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow. Exp Fluids. 2014;55(10):1–14.
  • Chen H, Che D, Zhang X, et al. UV grafting process for synthetic drag reduction of biomimetic riblet surfaces. J Appl Poly Sci. 2015;132(33):1–8.
  • Chen H, Rao F, Shang X, et al. Biomimetic drag reduction study on herringbone riblets of bird feather. J Bionic Eng. 2013;10(3):341–349.
  • Chen H, Rao F, Shang X, et al. Flow over bio-inspired 3D herringbone wall riblets. Exp Fluids. 2014;55(3):1–7.
  • Chen HW, Rao FG, Zhang DY, et al. Drag reduction study about bird feather herringbone riblets. Appl Mech Mat. 2014; 461:201–205.
  • Lin JC. Review of research on low-profile vortex generators to control boundary-layer separation. Prog Aerosp Sci. 2002;38(4):389–420.
  • Shahinfar S, Sattarzadeh SS, Fransson JHM, et al. Revival of classical vortex generators now for transition delay. Phys Rev Lett. 2012;109(7):074501.
  • Bushnell DM, Moore KJ. Drag reduction in nature. Annu Rev Fluid Mech. 1991;23(1):65–79.
  • Lilley G. A study of the silent flight of the owl. AIAA paper. 1998;2340(1998):l–6.
  • van Bokhorst E, de Kat R, Elsinga GE, et al. Feather roughness reduces flow separation during low Reynolds number glides of swifts. J Exp Biol. 2015;218(20):3179–3191. ISSN 0022-0949.
  • Gao X, Sunden B. Heat transfer and pressure drop measurements in rib-roughened rectangular ducts. Exp Therm Fluid Sci 2001;24(1):25–34.
  • Fang X, Yang Z, Wang B-C, et al. Highly-disturbed turbulent flow in a square channel with v-shaped ribs on one wall. Int J Heat Fluid Flow. 2015;56:182–197.
  • Stroock AD, Dertinger SKW, Ajdari A, et al. Chaotic mixer for microchannels. Science 2002;295(5555):647–651.
  • Koeltzsch K, Dinkelacker A, Grundmann R. Flow over convergent and divergent wall riblets. Exp Fluids. 2002;33(2):346–350.
  • Nugroho B, Hutchins N, Monty JP. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Int J Heat Fluid Flow. 2013;41:90–102.
  • Nadesan T, Mitsudharmadi H, Lee TS, et al. Quasi-streamwise counter-rotating vortices generated by convergent riblets in flat plate boundary layer. J Vis. 2014;17(4):319–325.
  • Iwamoto K, Suzuki Y, Kasagi N. Reynolds number effect on wall turbulence: toward effective feedback control. Int J Heat Fluid Fl. 2002;23(5):678–689.
  • Iwamoto K, Fukagata K, Kasagi N, et al. Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers. Phys Fluids (1994-present). 2005;17(1):011702–011702.
  • Spalart PR, McLean JD. Drag reduction: enticing turbulence, and then an industry. Phil Trans R Soc London A Math Phys Eng Sci. 2011;369(1940):1556–1569.
  • Gatti D, Quadrio M. Performance losses of drag-reducing spanwise forcing at moderate values of the reynolds number. Phys Fluids (1994-present). 2013;25(12):125109.
  • Wang Z-Q, Cheng N-S. Time-mean structure of secondary flows in open channel with longitudinal bedforms. Adv Water Resou. 2006;29(11):1634–1649.
  • Reynolds RT, Hayden P, Castro IP, et al. Spanwise variations in nominally two-dimensional rough-wall boundary layers. Exp Fluids. 2007;42(2):311–320.
  • Vermaas DA, Uijttewaal WSJ, Hoitink AJF. Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resources Res. 2011;47(2):1–12.
  • Barros JM, Christensen KT. Observations of turbulent secondary flows in a rough-wall boundary layer. J Fluid Mech. 2014;748:R1, 1–13.
  • Vanderwel C, Ganapathisubramani B. Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J Fluid Mech. 2015;774:R2, 1–12.
  • Schoppa W, Hussain F. A large-scale control strategy for drag reduction in turbulent boundary layers. Phys Fluids (1994-present). 1998;10(5):1049–1051.
  • Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to re= 590. Phys Fluids. 1999;11(4):943–945.
  • Breugem WP, Boersma BJ. Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys Fluids (1994-present). 2005;17(2):025103.
  • Orlandi P, Leonardi S, Antonia RA. Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J Fluid Mech. 2006;561:279–305.
  • Vreman AW, Kuerten JGM. Statistics of spatial derivatives of velocity and pressure in turbulent channel flow. Phys Fluids (1994-present). 2014;26(8):085103.
  • Chung D, Chan L, MacDonald M, et al. A fast direct numerical simulation method for characterising hydraulic roughness. J Fluid Mech. 2015;773:418–431.
  • Lozano-Durán A, Jiménez J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ = 4200. Phys Fluids (1994-present). 2014;26(1):011702.
  • García-Mayoral R, Jiménez J. Hydrodynamic stability and breakdown of the viscous regime over riblets. J Fluid Mech. 2011;678:317–347.
  • Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets. J Fluid Mech. 1993;255:503–539.
  • Goldstein D, Handler R, Sirovich L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface. J Fluid Mech. 1995;302:333–376.
  • Pourquie MBJM, Breugem WP, Boersma BJ. Some issues related to the use of immersed boundary methods to represent square obstacles. Int J Multiscale Comput Eng. 2009;7(6):509–522.
  • Fadlun EA, Verzicco R, Orlandi P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys. 2000;161(1):35–60.
  • Vreman AW, Kuerten JGM. Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180. Phys Fluids (1994-present). 2014;26(1):015102.
  • Ferziger J.H., Perić M. Computational methods for fluid dynamics. Berlin Heidelberg: Springer; 2002.
  • Wesseling P. Principles of computational fluid dynamics. Springer Series in Computational Mathematics. Berlin Heidelberg: Springer; 2001.
  • Frohnapfel B, Hasegawa Y, Quadrio M. Money versus time: evaluation of flow control in terms of energy consumption and convenience. J Fluid Mech. 2012;700:406–418.
  • Daschiel G, Baier T, Saal J, et al. On the flow resistance of wide surface structures. PAMM. 2012;12(1):569–570.
  • Mohammadi A, Floryan JM. Groove optimization for drag reduction. Phys Fluids (1994-present). 2013;25(11):113601.
  • Hoyas S, Jiménez J. Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys Fluids (1994-present). 2008;20(10):101511.
  • Bernardini M, Pirozzoli S, Orlandi P. Velocity statistics in turbulent channel flow up to Reτ = 4000. J Fluid Mech. 2014;742:171–191.
  • Lee M, Moser RD. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J Fluid Mech. 2015;774:395–415.
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Hage W, Bechert DW, Bruse M. Yaw angle effects on optimized riblets. In: Thiede P, editor. Aerodynamic drag reduction technologies. Berlin Heidelberg: Springer; 2001. p. 278–285.
  • García-Mayoral R, Jiménez J. Drag reduction by riblets. Phil Trans R Soc A: Math Phys Eng Sci. 2011;369(1940):1412–1427.
  • García-Mayoral R, Jiménez J. Scaling of turbulent structures in riblet channels up to Reτ ≈ 550. Phys Fluids (1994-present). 2012;24(10):105101.
  • Jiménez J. Turbulent flows over rough walls. Annu Rev Fluid Mech. 2004;36:173–196.
  • Shi J-M, Breuer M, Durst F. A combined analytical–numerical method for treating corner singularities in viscous flow predictions. Int. J Numer Meth Fluids. 2004;45(6):659–688.
  • Orlandi P, Leonardi S. DNS of turbulent channel flows with two-and three-dimensional roughness. J Turbul. 2006;7(73):1–22.
  • Saha AK. Far-wake characteristics of two-dimensional flow past a normal flat plate. Phys Fluids (1994-present). 2007;19(12):128110.
  • Narasimhamurthy VD, Andersson HI. Numerical simulation of the turbulent wake behind a normal flat plate. Int J Heat Fluid Flow. 2009;30(6):1037–1043.
  • Anderson W, Barros JM, Christensen KT, et al. Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J Fluid Mech. 2015;768:316–347.
  • Dubief Y, Delcayre F. On coherent-vortex identification in turbulence. J Turbul. 2000;1(1):011–011.
  • Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids (1994-present). 2002;14(11):L73–L76.
  • Peet Y, Sagaut P. Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Phys Fluids (1994-present). 2009;21(10):105105.
  • Goldstein DB, Tuan T-C. Secondary flow induced by riblets. J Fluid Mech. 1998;363:115–151.
  • Du Y, Symeonidis V, Karniadakis GE. Drag reduction in wall-bounded turbulence via a transverse travelling wave. J Fluid Mech. 2002;457:1–34.
  • Quadrio M, Xie W. Turbulent drag reduction by traveling waves of spanwise forcing. In: Proceedings of the 15th European Turbulence Conference; Aug 25–28; Delft, The Netherlands; 2015.
  • Viotti C, Quadrio M, Luchini P. Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys Fluids (1994-present). 2009;21(11):115109.
  • Quadrio M, Floryan JM, Luchini P. Effect of streamwise-periodic wall transpiration on turbulent friction drag. J Fluid Mech. 2007;576:425–444.
  • Mamori H, Fukagata K. Drag reduction effect by a wave-like wall-normal body force in a turbulent channel flow. Phys Fluids (1994-present). 2014;26(11):115104.