379
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Constrained large-eddy simulation of supersonic turbulent boundary layer over a compression ramp

, ORCID Icon, &
Pages 781-808 | Received 08 Jan 2017, Accepted 17 May 2017, Published online: 31 May 2017

References

  • Clemens NT, Narayanaswamy V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu Rev Fluid Mech. 2013;46(1):469–492.
  • Andreopoulos Y, Agui JH, Briassulis G. Shock wave and turbulence interactions. Annu Rev Fluid Mech. 2000;32(1):309–345.
  • Dolling DS. Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 2012;39(8):1517–1531.
  • Settles GS, Fitzpatrick TJ, Bogdonoff SM. Details of a shock separated turbulent boundary layer at a compression corner. AIAA J. 1976;14(12):1709–1715.
  • Dolling DS, Murphy MT. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 1983;21(12):1628–1634.
  • Ganapathisubramani B, Clemens NT, Dolling DS. Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J Fluid Mech. 2009;636:397–425.
  • Smits AJ, Muck KC. Experimental study of three shock wave/turbulent boundary layer interaction. J Fluid Mech. 1987;182:291–314.
  • Bookey PB, Wyckham C, Smits AJ, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA Paper. 2005;05:309.
  • Adams NA. Direct numerical simulation of turbulent compression ramp flow. Theor Comput Fluid Dyn. 1998;12(5):109–129.
  • Adams NA. Direct simulation of the turbulent boundary layer along a compression ramp at Ma=3 and Reθ = 1685. J Fluid Mech. 2000;420:47–83.
  • Wu M, Martín MP. Direct numermical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 2007;45:879–889.
  • Wu M, Martín MP. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J Fluid Mech. 2008;594:71–83.
  • Li X, Fu D, Ma Y, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp. Sci China Phys Mech Astron. 2010;53(9):1651–1658.
  • Li X, Fu D, Ma Y, et al. DNS of shock/boundary layer interaction flow in a supersonic compression ramp. In: Kuzmin A, editor. Computational Fluid Dynamics 2010: proceedings of the sixth international conference on computational fluid dynamics. Berlin: Springer-Verlag; 2011. p. 729–737.
  • Settles GS, Fitzpatrick TJ, Bogdonoff SM. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 1979;17(6):579–585.
  • Zheltovodov A. Shock waves/turbulent boundary layer interactions: fundamental studies and applications. AIAA Paper. 1996;96:1977.
  • Knight D, Yan H, Panaras AG, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog Aero Sci. 2003;39(2–3):121–184.
  • Dawson DM, Kawai S, Lele SK. Large-eddy simulation of a Mach 2.9 turbulent boundary layer over a 24° compression ramp. AIAA Paper. 2011;11:3431.
  • Spalart PR. Strategies for turbulence modelling and simulations. Int J Heat Fluid Flow. 2000;21(3):252–263.
  • Shur ML, Spalart PR, Strelets MK, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow. 2008;29(6):1638–1649.
  • Peng SH, Haase W. Advances in hybrid rans-les modelling. Berlin: Springer; 2008.
  • Edwards JR, Choi JI, Boles JA. Large eddy/Reynolds-Averaged Navier–Stokes simulation of a Mach 5 compression-corner interaction. AIAA J. 2008;46(4):977–991.
  • Chen S, Xiao Z, Pei S, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J Fluid Mech. 2012;703:1–28.
  • Jiang Z, Xiao Z, Shi Y, et al. Constrained large-eddy simulation of wall-bounded compressible turbulent flows. Phys Fluids. 2013;25:106102.
  • Spalart PR, Jou WH, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu C, Liu Z, editors. Advances in DNS/LES, Proceedings of first AFOSR international conference on DNS/LES. Columbus, OH: Greyden Press; 1997. p. 137–148.
  • Zhao Y, Xia Z, Shi Y, et al. Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Phys Fluids. 2014;26(9):095103.
  • White FM. Viscous fluid flow. New York (NY): McGraw-Hill; 1974.
  • Favre A. Turbulence: space-time statistical properties and behavior in supersonic flows. Phys Fluids A. 1983;23(10):2851–2863.
  • Erlebacher G, Hussanini MY, Speziale CG, et al. Toward the large-eddy simulation of compressible turbulent flow. J Fluid Mech. 1992;238:155–185.
  • Piomelli U. High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys Fluids A. 1993;5(6):1484–1490.
  • Meneveau C, Lund TS, Cabot WH. A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech. 1996;319:353–358.
  • Meneveau C, Katz J. Dynamic testing of subgrid models in large eddy simulation based on Germano identity. Phys Fluids. 1999;11(2):245–247.
  • Sullivan PP, Horst TW, Lenschow DH, et al. Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large eddy simulation modeling. J Fluid Mech. 2003;482:101–139.
  • Kleissl J, Meneveau C, Parlange MB. On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J Atmos Sci. 2003;60:2372–2388.
  • Hong R, Xia Z, Shi Y, et al. Constrained large-eddy simulation of compressible flow past a circular cylinder. Commun Comput Phys. 2014;15(2):388–421.
  • Simon F, Deck S, Guillen P, et al. Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J Fluid Mech. 2007;591:215–253.
  • Baldwin BS, Lomax H. Thin-layer approximation and algebraic model for separated turbulent flows. AIAA Paper. 1978;78:257.
  • Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows. AIAA Paper. 1992;92:0439.
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 1991;3(7):1760–1765.
  • Lilly DK. A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A. 1992;4(3):633–635.
  • Martín MP, Piomelli U, Candler GV. Subgrid-scale models for compressible large-eddy simulations. Theor Comput Fluid Dyn. 2000;13:361–376.
  • Jochen F, Von TD. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog Aero Sci. 2008;44(5):349–377.
  • Jiang Z, Xiao Z, Shi Y, et al. Constrained large-eddy simulation of turbulent flow and heat transfer in a stationary ribbed duct. Int J Numer Methods Heat Fluid Flow. 2016;26(3/4):1069–1091.
  • Pirozzoli S. Generalized conservative approximations of split convective derivative operators. J Comput Phys. 2010;229(19):7180–7190.
  • Bernardini M, Pirozzoli S, Grasso F. The wall pressure signature of transonic shock/boundary layer interaction. J Fluid Mech. 2011;671:288–312.
  • Pirozzoli S. Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates. J Comput Phys. 2011;230(8):2997–3014.
  • Pirozzoli S. Numerical methods for high-speed flows. Annu Rev Fluid Mech. 2011;43(1):163–194.
  • Martín MP, Taylor EM, Wu M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J Comput Phys. 2006;220(1):270–289.
  • Kennedy CA, Gruber A. Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J Comput Phys. 2008;227(3):1676–1700.
  • Pirozzoli S, Bernardini M. Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 2011;49(6):1307–1312.
  • Gottlieb S, Shu CW. Total variation diminishing Runge–Kutta schemes. Math Comput. 1998;67(221):73–85.
  • Grilli M, Hickel S, Adams NA. Large-eddy simulation of a supersonic turbulent boundary layer over a compression–expansion ramp. Int J Heat Fluid Flow. 2013;42:79–93.
  • Wu M, Martín MP. Direct numerical simulation of shockwave/turbulent boundary layer interactions. AIAA Paper. 2004;04:2145.
  • Xu S, Martín MP. Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys Fluids. 2004;16(7):2623–2639.
  • Poinsot TJ, Lele SK. Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys. 1992;101(1):104–129.
  • Coleman GN, Kim J, Moser RD. A numerical study of turbulent supersonic isothermal-wall channel flow. J Fluid Mech. 1995;305:159–183.
  • Hopkins EJ, Inouye M. An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plats at supersonic and hypersonic mach numbers. AIAA J. 1971;9(6):993–1003.
  • Fernholz HH, Finley PJ. A critical compilation of compressible turbulent boundary layer data. AGARDograph-AG. 1977:223.
  • Fernholz HH, Finley PJ, Mikulla V. A further compilation of compressible boundary layer data with a survey of turbulence data. AGARDograph-AG. 1981:263.
  • Loginov MS, Adams NA, Zheltovodov AA. Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J Fluid Mech. 2006;565:135–169.
  • Zukoski EE. Turbulent boundary-layer separation in front of a forward-facing step. AIAA J. 1967;5(10):1746–1753.
  • Zheltovodov AA, Shilein EK, Horstman CC. Development of separation in the region where a shock interacts with a turbulent boundary layer perturbed by rarefaction waves. J Appl Mech Tech Phys. 1993;34(3):346–354.
  • Huang PG, Coleman GN, Bradshaw P. Compressible turbulent channel flows: DNS results and modelling. J Fluid Mech. 1995;305:185–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.