273
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Vorticity statistics based on velocity and density-weighted velocity in premixed reactive turbulence

, , &
Pages 825-853 | Received 15 Sep 2016, Accepted 19 May 2017, Published online: 16 Jun 2017

References

  • Davidson PA. Turbulence: an introduction for scientists and engineers. Oxford (UK): Oxford University Press; 2004.
  • She Z, Jackson E, Orszag SA. Intermittent vortex structures in homogeneous isotropic turbulence. Nature. 1990;344:226–229.
  • Tsinober A. An informal introduction to turbulence. New York (NY): Kluwer; 2001.
  • Moffatt HK, Tsinober A. Helicity in laminar and turbulent flow. Annu Rev Fluid Mech. 1992;24:281–312.
  • Synge JL, Lin CC. On a statistical model of isotropic turbulence. Trans R Soc Can. 1943;37:45–79.
  • Aivasis K, Pullin D. On velocity structure functions and the spherical vortex model for isotropic turbulence. Phys Fluids. 2001;13(7):2019–2029.
  • Ruetsch GR, Maxey MR. Small-scale features of vorticity and passive scalar fields inhomogeneous isotropic turbulence. Phys Fluids A 1991;3(6):1587–1597.
  • Townsend A. On the fine structure of turbulence. Proc.R.Soc.Lond, A. 1951;208:534–542.
  • Horiuti K, Fujisawa T. The multi-mode stretched spiral vortex in homogeneous isotropic turbulence. J Fluid Mech. 2008;595:341–366.
  • Jimenez J, Wray AA. On the characteristics of vortex filaments in isotropic turbulence. J Fluid Mech. 1998;373:255–285.
  • Tennekes H, Lumley JL. A first course in turbulence. 1st ed., Cambridge, MA: MIT Press; 1972.
  • Haller G. An objective definition of a vortex. J. Fluid Mech. 2005;525:1–26.
  • Kolar V. Vortex identification: new requirements and limitations. Int J Heat Fluid Flow. 2007;28:638–652.
  • Wang, L. Structures of the vorticity tube segment in turbulence. Phys Fluids. 2012;24:045101.
  • Nomura KK, Elghobashi SE. The structure of inhomogeneous turbulence in variable density nonpremixed flames. Theor Fluid Dyn. 1993;5:153–175.
  • Boratov N, Elghobashi SE, Zhong R. On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames. Phys Fluids 1996;10(9):2260–2267.
  • Jaberi FA, Livescu D, Madnia CK. Characteristics of chemically reacting compressible homogeneous turbulence. Phys Fluids. 2000;12(5):1189–1209.
  • Hamlington PE, Poludnenko AY, Oran ES. Interactions between turbulence and flames in premixed reacting flows. Phys Fluids. 2011;23:125111.
  • Chomiak J, Nisbet J. Modelling variable density effects in turbulent flames, combust. Flame. 1995;102:371–386.
  • Chakraborty N. Statistics of vorticity alignment with local strain rates in turbulent premixed flames. Eur J Mech B/Fluids. 2014;46:201–220.
  • Treurniet TC, Nieuwstadt FTM, Boersma BJ. Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modelled by the G-equation. J Fluid Mech. 2006;565:25–62.
  • Lipatnikov AN, Nishiki S, Hasegawa T. A direct numerical study of vorticity transformation in weakly turbulent premixed flames. Phys Fluids. 2014;26:105104.
  • Steinberg AM, Driscoll JF, Ceccio SL. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp Fluids. 2008;44:985–999.
  • Steinberg AM, Driscoll JF. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics. Combust Flame. 2009;156: 2285–2306.
  • Steinberg AM, Driscoll JF, Ceccio SL. Temporal evolution of flame stretch due to turbulence and the hydrodynamic instability. Proc Combust Inst. 2009;32:1713–1721.
  • Steinberg AM, Driscoll JF, Ceccio SL. Three-dimensional temporally resolved measurements of turbulence-flame interactions using orthogonal-plane cinema-stereoscopic PIV. Exp Fluids. 2009;47:527–547.
  • Wang L, Peters N. Length scale distribution functions and conditional means for various fields in turbulence. J Fluid Mech. 2006;554:457–475.
  • Wang L. On properties of fluid turbulence along streamlines. J Fluid Mech. 2010;648:183–203.
  • Wang L, Chakraborty N, Zhang J. streamline segment analysis of turbulent premixed flames. Proc Combust Inst. 2013;34:1401–1409.
  • Chakraborty N, Wang L, Klein M. Streamline segment statistics of premixed flames with non-unity lewis numbers. Phys. Rev E 2014;89:033015.
  • Chen JH, Choudhary A, de Supinski B, et al. Terascale direct numerical simulations of turbulent combustion using S3D, Comp Sci Discov. 2009;2:015001.
  • Rutland CJ, Cant RS. Turbulent transport in premixed flames. Proc.1994 Summer Progr. Center Turbulence Res. 1994;19950014623:75–94.
  • Jenkins KW, Cant RS. DNS of turbulent flame kernels. In: Proceedings of the 2nd AFOSR Conference on DNS and LES. Knight D, Sakell L, editors. Dordrecht: Kluwer Academic Publishers; 1999; pp. 192–202.
  • Poinsot T, Lele SK. Boundary conditions for direct simulation of compressible viscous flows. J Comp Phys. 1992;101:104–129.
  • Rogallo RS. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 91416. California: NASA Ames Research Center; 1981.
  • Veynante D, Trouvé A. Bray KNC. et al. Gradient and counter-gradient turbulent scalar transport in turbulent premixed flames, J Fluid Mech. 1997;332:263–293.
  • Boger M, Veynante D, Boughanem H, et al. A Direct Numerical simulation analysis of flame surface density concept for large Eddy simulation of turbulent premixed combustion. Proc Combust Inst. 1998;27:917–925.
  • Charlette F, Meneveau C, Veynante D. A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: nondynamic formulation and initial tests, Combust Flame 2002;131:159–180.
  • Swaminathan N, Bray KNC. Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust Flame. 2005;143:549–565.
  • Swaminathan N, Grout R. Interaction of turbulence and scalar fields in premixed flames. Phys Fluids. 2006;18:045102.
  • Grout R. An age extended progress variable for conditioned reaction rates. Phys Fluids. 2007;19:105107.
  • Han I, Huh KH. Effects of Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc Combust Inst. 2009;32:1419–1425.
  • Chakraborty N, Katragadda M, Cant RS. Statistics and modelling of turbulent kinetic energy transport in different regimes of premixed combustion. Flow Turb Combust. 2011;87:205–235.
  • Chakraborty N, Hartung G, Katragadda M, et al. A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust Flame. 2011;158:1372–1390.
  • Bray KNC, Libby PA, Moss JB. Unified modelling approach for premixed turbulent combustion – Part I: general formulation. Combust Flame. 1985;61:87–102.
  • Chakraborty N. Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys Fluids. 2007;19:105109.
  • Bychkov V. Nonlinear equation for a curved stationary flame and flame velocity. Phys of Fluids A. 1998;10(8):2091–2098.
  • Chakraborty N, Cant RS. Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys Fluids. 2005;17: 105105.
  • Chakraborty N, Hawkes ER, Chen JH, et al. Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: a comparative study. Combust Flame. 2008;154:259–280.
  • Chakraborty N, Klein M. Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys Fluids. 2008;20(065102): 1.
  • Chong MS, Perry AE, Cantwell BJ. A general classification of three dimensional flow patterns. Phy Fluids A. 1990;2(5):765–777.
  • Cifuentes L, Dopazo C, Martin J et al. Local flow topologies and scalar structures in a turbulent premixed flame. Phys Fluids. 2014;26:065108.
  • Ashurst W, Kerstein A, Kerr RM, et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys Fluids A. 1987;30:2343–2354.
  • Majda AJ. Vorticity, turbulence, and acoustics in fluid flow. SIAM Rev. 1991;33:349–388.
  • Jimenez J. Kinematic alignment effects in turbulent flows. Phys Fluids A. 1992;4:652–654.
  • Chakraborty N, Swaminathan N. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part I: physical insight. Phys Fluids. 2007;19:045103.
  • Hartung G, Hult J, Kaminski CF, et al. Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys Fluids. 2008;20:035110.
  • Steinberg AM, Driscoll JF, Swaminathan N. Statistics and dynamics of turbulence-flame alignment in premixed combustion. Combust Flame. 2012;159:2576–2588.
  • Chakraborty N, Cant RS. Effects of turbulent Reynolds number on the modelling of turbulent scalar flux in premixed flames. Numer Heat Transf A 2015;67(11):1187–1207.
  • Im HG, Arias PG, Chaudhuri S, et al. Direct numerical simulations of statistically stationary turbulent premixed flames. Combust Sci Technol. 2016;188(2):1182–1198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.