179
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Turbulent scalar flux transport in head-on quenching of turbulent premixed flames: a direct numerical simulations approach to assess models for Reynolds averaged Navier Stokes simulations

, &
Pages 1033-1066 | Received 03 Oct 2016, Accepted 05 Jul 2017, Published online: 21 Jul 2017

References

  • Launder BE. Heat and mass transport by turbulence. Top Appl Phys. 1976;12:231–287.
  • Bray KNC, Libby PA, Moss JB. Unified modelling approach for premixed turbulent combustion – part I: general formulation. Combust Flame. 1985;61:87–102.
  • Cheng RK, Shepherd IG. Influence of burner geometry on premixed turbulent flame propagation. Combust Flame. 1991;85:7–26.
  • Rutland CJ, Cant RS. Turbulent transport in premixed flames. Proc. of 1994 Summer Program, Centre for Turbulence Research, Stanford University/NASA Ames; 1994.
  • Veynante D, Trouvé A, Bray KNC, et al. Gradient and counter-gradient turbulent scalar transport in turbulent premixed flames. J Fluid Mech. 1997;332:263–293.
  • Veynante D, Poinsot T. Effects of pressure gradient in turbulent premixed flames. J Fluid Mech. 1997;353:83–114.
  • Boger M. Sub-grid scale modeling for large eddy simulation of turbulent premixed combustion [PhD dissertation]. Paris (France): E´ cole Centrale Paris; 2000.
  • Swaminathan N, Bilger RW, Cuenot B. Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry. Combust Flame. 2001;126:1764–1779.
  • Rymer G. Analysis and modeling of the mean reaction rate and transport terms in turbulent premixed combustion [PhD dissertation]. Paris (France): E´cole Centrale Paris; 2001.
  • Kalt PAM, Chen YC, Bilger RW. Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combust Flame. 2002;129:401–415.
  • Tullis SW, Cant RS. Scalar transport modeling in large eddy simulation of turbulent premixed flames. Proc Combust Inst. 2003;29:2097–2104.
  • Huai Y, Sadiki A, Pfadler S, et al. Experimental assessment of scalar flux models for large eddy simulations of reacting flows. Turb Heat Mass Transfer. 2006;5:263–266.
  • Nishiki S, Hasegawa T, Borghi R, et al. Modelling of turbulent scalar flux in turbulent premixed flames based on DNS database. Combust Theory Model. 2006;10:39–55.
  • Richard S, Colin O, Vermorel O, et al. Large eddy simulation of combustion in spark ignition engine. Proc Combust Inst. 2007;31:3059–3066.
  • Pfadler S, Kerl J, Beyrau F, et al. Direct evaluation of the subgrid-scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV. Proc Combust Inst. 2009;32:1723–1730.
  • Chakraborty N, Cant RS. Effects of Lewis number on scalar transport in turbulent premixed flames. Phys Fluids. 2009;21:0351101.
  • Chakraborty N, Cant RS. Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames. Combust Flame. 2009;156:1427–1444.
  • Chakraborty N, Cant RS. Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames. Num Heat Trans. 2009;55:762–779.
  • Lecocq G, Richard S, Colin O, et al. Gradient and counter-gradient modelling in premixed flames: theoretical study and application to the LES of a Lean premixed turbulent swirl-burner. Combust Sci Technol. 2010;182:465–479.
  • Chakraborty N, Cant RS. Effects of turbulent Reynolds number on the modelling of turbulent scalar flux in premixed flames. Numer Heat Trans A. 2015;67(11):1187–1207.
  • Gao Y, Chakraborty N, Klein M. Assessment of sub-grid scalar flux modelling in premixed flames for large eddy simulations: a-priori direct numerical simulation. Eur J Mech Fluids-B. 2015;52:97–108.
  • Gao Y, Chakraborty N, Klein M. Assessment of the performances of sub-grid scalar flux models for premixed flames with different global Lewis numbers: a direct numerical simulation analysis. Int J Heat Fluid Flow. 2015;52:28–39.
  • Klein M, Chakraborty N, Gao Y. Scale similarity based models and their application to subgrid scale scalar flux modelling in the context of turbulent premixed flames. Int J Heat Fluid Flow. 2016;57:91–108.
  • Durbin PA, Pettersson Reif BA. Statistical theory and modelling for turbulent flows. Chichester (UK): John Willey & Sons, 2001.
  • Kim J, Moin P. Transport of passive scalars in a turbulent channel flow. Turbulent Shear Flows. 1989;6:85–95.
  • Abe K, Suga K. Towards the development of a Reynolds-averaged of algebraic scalar flux model. Int J Heat Fluid Flow. 2001;22:19–29.
  • Guo Y, Xu C, Cui G, et al. Large eddy simulation of scalar turbulence using a new subgrid eddy diffusivity model. Int J Heat Fluid Flow. 2007;28:268–274.
  • Murman SM. A scalar anisotropy model for turbulent eddy viscosity. Int J Heat Fluid Flow. 2013;42:115–130.
  • Rossi R, Philips DA, Iaccarino G. A numerical study of scalar dispersion downstream of a wall-mounted using direct simulations and algebraic closures. Int J Heat and Fluid Flow. 2010;31:805–819.
  • van Hooff T, Blocken B, Glousseau P, et al. Counter-gradient diffusion in a slot-ventilated enclosure assessed by LES and RANS. Comput Fluids. 2014;96:63–75.
  • Lai J, Chakraborty N. Modelling of progress variable variance transport in head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Combust Sci Technol. 2016;188:1925–1950.
  • Lindstedt RP, Vaos EM. Modelling of premixed turbulent flames with second moment methods. Combust Flame. 1999;116:461–485.
  • Lindstedt RP. Transported probability density function methods for turbulent premixed flames with second moment methods. In: Swaminathan N, Bray KNC, editors. Turbulent Premixed Flames. Cambridge (UK): Cambridge University Press; 2011. pp. 102–130.
  • Chen JH, Choudhary A, de Supinski B, et al. Terascale direct numerical simulations of turbulent combustion using S3D. Comp Sci Discov. 2009;2:01500.
  • Boger M, Veynante D, Boughanem H, Trouvé A, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc Combust Inst. 1998;27:917–925.
  • Jenkins KW, Cant RS. DNS of turbulent flame kernels. In: Liu C, Sakell L, Beautner T, editors. Proc. Second AFOSR Conf. on DNS and LES. Dordrecht (Netherlands): Kluwer Academic Publishers; 1999. pp. 191–202.
  • Wray AA. Minimal storage time advancement schemes for spectral methods, unpublished report. Mountain View (CA): NASA Ames Research Center; 1990.
  • Rogallo RS. Numerical experiments in homogeneous turbulence. Mountain View (CA): NASA Technical Memorandum 81315, NASA Ames Research Center; 1981.
  • Batchelor GK, Townsend AA. Decay of turbulence in final period. Proc Roy Soc Lond. 1948;A194:527–543.
  • Rocco G, Battista F, Picano F, et al. Curvature effects in turbulent premixed flames of H2/Air: a DNS study with reduced chemistry. Flow Turb Combust. 2015;94:359–379.
  • Rutland C, Trouvé A. Direct Simulations of premixed turbulent flames with nonunity Lewis numbers. Combust Flame. 1993;94:41–57.
  • Im HG, Chen JH. Preferential diffusion effects on the burning rate of interacting turbulent premixed Hydrogen-Air flames. Combust Flame. 2002;126:246–258.
  • Chakraborty N, Cant RS. Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys Fluids. 2005;17:105105.
  • Lai J, Chakraborty N. Effects of Lewis number on head on quenching of turbulent premixed Flame: a direct numerical simulation analysis. Flow Turb Combust. 2016;96:279–308.
  • Daly BJ, Harlow FH. Transport equations of turbulence. Phys Fluids. 1970;13:2634–2649.
  • Chakraborty N, Lipatnikov AN. Conditional velocity statistics for high and low Damköhler number turbulent premixed combustion in the context of Reynolds Averaged Navier Stokes simulations. Proc Combust Inst. 2013;34:1333–1345.
  • Huang WM, Vosen SR, Greif R. Heat transfer during laminar flame quenching. Proc Combust Inst. 1986;21:1853–1860.
  • Jarosinsky J. A survey of recent studies on flame extinction. Combust Sci Technol. 1986;12:81–116.
  • Vosen SR, Greif R, Westbrook C. Unsteady heat transfer in laminar quenching. Proc Combust Inst. 1984;20:76–83.
  • Poinsot T, Haworth D, Bruneaux G. Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust Flame. 1993;95:118–132.
  • Bruneaux G, Poinsot T, Ferziger JH. Premixed flame–wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J Fluid Mech. 1997;349:191–219.
  • Alshaalan TM, Rutland CJ. Turbulence, scalar transport, and reaction rates in flame-wall interaction. Proc Combust Inst. 1998;27:793–800.
  • Launder BL. Second-moment closure: present… and future. Int J Heat Fluid Flow. 1989;10:282–300.
  • Craft T, Graham L, Launder B. Impinging jet studies for turbulence model assessment –II. an examination of the performance of four turbulence models. Int J Heat Mass Transfer. 1993;36:2687–2697.
  • Durbin PA. A Reynolds stress model for near-wall turbulence. J Fluid Mech. 1993;249:465–493.
  • Jones WP. Turbulence modelling and numerical solution methods for variable density and combusting flows. In: Libby PA, Williams FA, editors. Turbulent Reacting Flows. London: Academic Press, 1994. pp. 309–374.
  • Bradley D, Gaskell PH, Gu XJ. Application of a Reynolds stress, stretched flamelet, mathematical model to computations to turbulent burning velocities and comparison with experiments. Combust Flame. 1994;96:221–248.
  • Domingo P, Bray KNC. Laminar flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion. Combust Flame. 2000;121:555–574.
  • Klein M, Kasten C, Chakraborty N, et al. Turbulent scalar fluxes in detailed chemistry based premixed flame DNS simulations of H2-air flames in different regimes of combustion. Proceedings of the 11th ERCOFTAC Symposium on Engineering, Turbulence, Modelling and Measurements; Palermo; 21–23; September 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.