519
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence

, , , , &
Pages 167-197 | Received 10 Jun 2017, Accepted 17 Nov 2017, Published online: 06 Jan 2018

References

  • Frisch U. Turbulence: the legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press; 1995.
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Lesieur M. Turbulence in fluids. Dordrecht: Springer; 2008.
  • Arnèodo A, Baudet C, Belin F, et al. Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys Lett. 1996;34:411–416.
  • Qian J. Scaling of structure functions in homogeneous shear-flow turbulence. Phys Rev E. 2002;65:036301.
  • Gotoh T, Fukayama D, Nakano T. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys Fluids. 2002;14:1065.
  • Benzi R, Amati G, Casciola CM, et al. Intermittency and scaling laws for wall bounded turbulence. Phys Fluids. 1999;11:1284–1286.
  • Antonia RA, Smalley RJ. Velocity and temperature scaling in a rough wall boundary layer. Phys Rev E. 2000;62:640.
  • De Silva CM, Marusic I, Woodcock JD, et al. Scaling of second- and higher-order structure functions in turbulent boundary layers. J Fluid Mech. 2015;769:654–686.
  • La Porta A, Crawford AM, Voth GA, et al. Fluid particle accelerations in fully developed turbulence. Nature. 2001;409:1017–1019.
  • Mordant N, Metz P, Michel O, et al. Measurement of Lagrangian velocity in fully developed turbulence. Phys Rev Lett. 2001;87:214501.
  • Biferale L, Boffetta G, Celani A, et al. Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys Rev Lett. 2004;93:064502.
  • Arnèodo A, Benzi R, Berg J, et al. Universal intermittent properties of particle trajectories in highly turbulent flows. Phys Rev Lett. 2008;100:254504.
  • Toschi F, Bodenschatz E. Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech. 2009;41:375–404.
  • Benzi R, Biferale L, Fisher R, et al. Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence. J Fluid Mech. 2010;653:221–244.
  • Smagorinsky J. General circulation experiments with the primitive equations: i. the basic experiment. Mon Weather Rev. 1963;91:99–164.
  • Meneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulation. Ann Rev Fluid Mech. 2000;32:1.
  • Sagaut P, Cambon C. Homogeneous turbulence dynamics. Cambridge: Cambridge University Press; 2008.
  • Piomelli U, Moin P, Ferziger JH. Model consistency in large eddy simulation of turbulent channel flows. Phys Fluids. 1988;31:1884–1891.
  • Zhou Y, Brasseur JG, Juneja A. A resolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence. Phys Fluids. 2001;13(9):2602–2610.
  • Brasseur JG, Wei T. Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys Fluids. 2010;22:021303.
  • Meneveau C, Marusic I. Generalized logarithmic law for high-order moments in turbulent boundary layers. J Fluid Mech. 2013;719:R1.
  • Hellström LHO, Marusic I, Smits AJ. Self-similarity of the large-scale motions in turbulent pipe flow. J Fluid Mech. 2016;792:R1.
  • Yang XIA, Meneveau C, Marusic I, et al. Extended self-similarity in moment-generating-functions in wall-bounded turbulence at high Reynolds number. Phys Rev Fluids. 2016;1:044405.
  • Stevens RJAM, Wilczek M, Meneveau C. Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J Fluid Mech. 2014;757:888–907.
  • Martínez Tossas LA, Churchfield MJ, Meneveau C. A Highly resolved large-eddy simulation of a wind turbine using an actuator line model with optimal body force projection. J Phys Conf Ser. 2016;753:082014.
  • Meneveau C. Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests. Phys Fluids. 1994;6:815.
  • Waleffe F. The nature of triad interactions in homogeneous turbulence. Phys Fluids A. 1992;4:350–363.
  • Casciola CM, Gualteru P, Benzi R, et al. Scale-by-scale budget and similarity laws for shear turbulence. J Fluid Mech. 2003;476:105–114.
  • Fang L, Bos WJT, Shao L, et al. Time reversibility of Navier–Stokes turbulence and its implication for subgrid scale models. J Turbul. 2012;13:N3.
  • Biferale L, Musacchio S, Toschi F. Inverse energy cascade in three-dimensional isotropic turbulence. Phys Rev Lett. 2012;108:164501.
  • Chen Q, Chen S, Eyink GL. The joint cascade of energy and helicity in three-dimensional turbulence. Phys Fluids. 2003;15:361.
  • Chen Q, Chen S, Eyink GL, et al. Intermittency in the joint cascade of energy and helicity. Phys Rev Lett. 2003;90:214503.
  • Smith LM, Chasnov JR, Waleffe F. Crossover from two- to three-dimensional turbulence. Phys Rev Lett. 1996;77:2467.
  • Mininni PD, Alexakis A, Pouquet AG. Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys Fluids. 2009;21:015108.
  • Biferale L, Bonaccorso F, Mazzitelli IM, et al. Coherent structures and extreme events in rotating multiphase turbulent flows. Phys Rev X. 2016;6:041036.
  • Nastrom GD, Gage KS, Jasperson WH. Kinetic energy spectrum of large- and meso-scale atmospheric processes. Nature. 1984;310:36–38.
  • Lautenschlager M, Eppel DP, Thacker WC. Subgrid parametrization in helical flows. Beitr Phys Atmosph. 1988;61:87–97.
  • Smith LM, Waleffe F. Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys Fluids. 1999;11:1608.
  • Celani A, Musacchio S, Vincenzi D. Turbulence in more than two and less than three dimensions. Phys Rev Lett. 2010;104:184506.
  • Xia H, Byrne D, Falkovich G, et al. Upscale energy transfer in thick turbulent fluid layers. Nat Phys. 2011;7:321.
  • Frisch U, Pouquet A, Léorat J, et al. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J Fluid Mech. 1975;68:769–778.
  • Pouquet A, Frisch U, Léorat J. Strong MHD helical turbulence and the nonlinear dynamo effect. J Fluid Mech. 1976;77:321–354.
  • Cerutti S, Meneveau C. Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence. Phys Fluids. 1998;10:928.
  • Benzi R, Ciliberto S, Tripiccione R, et al. Extended self-similarity in turbulent flows. Phys Rev E. 1993;48:R29–R32.
  • Benzi R, Ciliberto S, Baudet C, et al. On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D. 1995;80(4):385–398.
  • Eyink GL. Locality of turbulent cascades. Physica D. 2005;207:91–116.
  • Aluie H, Eyink GL. Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys Fluids. 2009;21:115107.
  • Aluie H, Eyink GL. Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter. Phys Fluids. 2009;21:115108.
  • Borue V, Orszag SA. Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity. Phys Rev E. 1995;51:2859(R).
  • Speziale CG. Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J Fluid Mech. 1985;156:55–62.
  • Patterson GS, Orszag SA. Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys Fluids. 1971;14:2538–2541.
  • Sawford BL. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys Fluids A. 1991;3:1577–1886.
  • Falkovich G. Bottleneck phenomenon in developed turbulence. Phys Fluids. 1994;6(4):1411.
  • Kraichnan RH. Eddy-viscosity in two and three dimensions. J Atmos Sci. 1976;33:1521.
  • Chollet J-P, Lesieur M. Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J Atmos Sci. 1982;38:2747.
  • Carati D, Winckelmans GS, Jeanmart H. On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J Fluid Mech. 2001;441:119–138.
  • Winckelmans GS, Wray AA, Vasilyev OV, et al. Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Phys Fluids. 2001;13(5):1385–1403.
  • Doering CR, Gibbon JD. Applied analysis of the Navier–Stokes equations. Cambridge: Cambridge University Press; 1995.
  • Leonard A. Energy cascade in large-eddy simulations of turbulent fluid flows. Adv Geophys. 1975;18:237–248.
  • Thiry O, Winckelmans G. A mixed multiscale model better accounting for the cross term of the subgrid-scale stress and for backscatter. Phys Fluids. 2016;28(2):025111.
  • Ray SS, Frisch U, Nazarenko S, et al. Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations. Phys Rev E. 2011;84:016301.
  • Rivera MK, Aluie H, Ecke RE. The direct enstrophy cascade of two-dimensional soap film flows. Phys Fluids. 2014;26(5):055105.
  • Iyer KP, Sreenivasan KR, Yeung PK. Reynolds number scaling of velocity increments in isotropic turbulence. Phys Rev E. 2017;95:021101(R).
  • Biferale L, Procaccia I. Anisotropy in turbulent flows and in turbulent transport. Phys Rep. 2005;414:43–164.
  • Schumacher J, Scheel JD, Krasnov D, et al. Small-scale universality in fluid turbulence. Proc Nat Acad Sci USA. 2014;111:10961.
  • Constantin P, Weinan E, Titi ES. Onsager's conjecture on the energy conservation for solutions of Euler's equation. Commun Math Phys. 1994;165:207.
  • Eyink GL. The multifractal model of turbulence and a priori estimates in large-eddy simulation, I. subgrid flux and locality of energy transfer. arxiv:9602018v1, 1996.
  • Vreman B, Geurts B, Kuerten H. Realizability conditions for the turbulent stress tensor in large-eddy simulation. J Fluid Mech. 1994;278:351.
  • She ZS, Lévêque E. Universal scaling laws in fully developed turbulence. Phys Rev Lett. 1994;72(3):336–339.
  • Boffetta G, Mazzino A, Vulpiani A. Twenty-five years of multifractals in fully developed turbulence: a tribute to Giovanni Paladin. J Phys A. 2008;41:363001.
  • Frisch U, Kurien S, Pandit R, et al. Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys Rev Lett. 2008;101:144501.
  • Frisch U, Pomyalov A, Procaccia I, et al. Turbulence in noninteger dimensions by fractal Fourier decimation. Phys Rev Lett. 2012;108:074501.
  • Eyink GL. Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D. 1994;78:222.
  • Lanotte AS, Benzi R, Malapaka SK, et al. Turbulence on a fractal Fourier set. Phys Rev Lett. 2015;115:264502.
  • Buzzicotti M, Bhatnagar A, Biferale L, et al. Lagrangian statistics for Navier–Stokes turbulence under Fourier-mode reduction: fractal and homogeneous decimations. New J Phys. 2016;18:113047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.