201
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Geometry and scaling laws of excursion and iso-sets of enstrophy and dissipation in isotropic turbulence

, &
Pages 297-321 | Received 05 Aug 2017, Accepted 27 Dec 2017, Published online: 05 Feb 2018

References

  • Frisch U. Turbulence. The legacy of A. N. Kolmogorov. Cambridge (UK): Cambridge University Press; 1995. ISBN 0-521-45103-5.
  • Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc USSR Academy Sci. 1941;30:299–303.
  • Kolmogorov AN. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech. 1962;13(1:82–85. DOI: 10.1017/S0022112062000518.
  • Obukhov AM. Some specific features of atmospheric turbulence. J Fluid Mech. 1962;13(1:77–81. DOI: 10.1017/S0022112062000506.
  • Novikov EA, Stewart RW. Intermittency of turbulence and the spectrum of fluctuations of energy dissipation. Izv Akad Nauk SSSR Geofiz. 1964;3:408.
  • Novikov EA. Scale similarity for random fields. Soviet Phys Doklady. 1969;14:104.
  • Novikov EA. Intermittency and scale similarity in the structure of a turbulent flow. Prikl Mat Mech. 1971;35:266–277.
  • Novikov EA. The effects of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients. Phys Fluids Fluid Dyn. 1990;2(5):814–820. DOI: 10.1063/1.857629. Available from: http://dx.doi.org/10.1063/1.857629.
  • Mandelbrot BB. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech. 1974;62(2:331–358. DOI: 10.1017/S0022112074000711.
  • Frisch U, Sulem PL, Nelkin M. A simple dynamical model of intermittent fully developed turbulence. J Fluid Mech. 1978;87(4:719–736. DOI: 10.1017/S0022112078001846.
  • Frisch U, Parisi G. On the singularity structure of fully developed turbulence. In: Turbulence and predictability in geophysical fluid dynamics and climate dynamics. Varenna (Italy), Amsterdam (NY), North-Holland. (Proceedings of the International School of Physics Enrico Fermi series); 1985. p. 84–87.
  • Benzi R, Paladin G, Parisi G, et al. On the multifractal nature of fully developed turbulence and chaotic systems. J Phys Math Gen. 1984;17(18):3521. Available from: http://stacks.iop.org/0305-4470/17/i=18/a=021.
  • Meneveau C, Sreenivasan KR. Simple multifractal cascade model for fully developed turbulence. Phys Rev Lett. 1987;59:1424–1427.
  • Meneveau C, Sreenivasan KR. The multifractal nature of turbulent energy dissipation. J Fluid Mech. 1991;224:429–484.
  • Sreenivasan KR. Fractals and multifractals in fluid turbulence. Ann Rev Fluid Mech. 1991;23(1):539–604.
  • Ishihara T, Gotoh T, Kaneda Y. Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Ann Rev Fluid Mech. 2009;41:165–180.
  • Ishihara T, Higuchi H. Multifractal analysis by using high-resolution direct numerical simulation of turbulence. Dordrecht: Springer; 2008. p. 61–66.
  • Meneveau C, O’Neil J. Scaling laws of the dissipation rate of turbulent subgrid-scale kinetic energy. Phys Rev E. 1994;49:2866–2874.
  • Biferale L, Calzavarini E, Toschi F. Multi-time multi-scale correlation functions in hydrodynamic turbulence. Phys Fluids. 2011;23(8):085107. DOI: 10.1063/1.3623466.
  • Benzi R, Ciliberto S, Tripiccione R, et al. Extended self-similarity in turbulent flows. Phys Rev E. 1993;48:R29–R32. DOI: 10.1103/PhysRevE.48.R29. Available from: https://link.aps.org/doi/10.1103/PhysRevE.48.R29.
  • Meneveau C. Transition between viscous and inertial-range scaling of turbulence structure functions. Phys Rev E. 1996;54:3657–3663.
  • Meneveau C, Sreenivasan KR. Measurement of f(α) from scaling of histograms, and applications to dynamical systems and fully developed turbulence. Phys Lett A. 1989;137(3):103–112.
  • Moisy F, Jiménez J. Geometry and clustering of intense structures in isotropic turbulence. J Fluid Mech. 2004;513:111–133.
  • Adler RJ. The geometry of random fields. Philadelphia (PA): SIAM; 2010.
  • Novikov D, Feldman HA, Shandarin SF. Minkowski functionals and cluster analysis for CMB maps. Int J Modern Phys D. 1999;8(03):291–306.
  • Mecke KR, Buchert T, Wagner H. Robust morphological measures for large scale structure in the universe. Astron Astrophys. 1994;288:697–704.
  • Calvo MAA, Shandarin SF, Szalay A. Geometry of the cosmic web: Minkowski functionals from the Delaunay tessellation. In: 2010 International Symposium on Voronoi Diagrams in Science and Engineering (ISVD) 2010 Jun 28–30; Quebec (QC): IEEE; 2010. p. 235–243.
  • Vincent A, Meneguzzi M. The spatial structure and statistical properties of homogeneous turbulence. J Fluid Mech. 1991;225:1–20.
  • Jiménez J, Wray AA, Saffman PG, et al. The structure of intense vorticity in isotropic turbulence. J Fluid Mech. 1993;255:65–90. DOI: 10.1017/S0022112093002393.
  • Meneveau C, Sreenivasan KR, Kailasnath P, et al. Joint multifractal measures: theory and applications to turbulence. Phys Rev A. 1990;41:894–913.
  • Meneveau C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Ann Rev Fluid Mech. 2011a;43:219–245.
  • Li Y, Perlman E, Wan M, et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J Turbul. 2008;9:N31.
  • Bershadskii A, Kit E, Tsinober A, et al. Strongly localized events of energy, dissipation, enstrophy and enstrophy generation in turbulent flows. Fluid Dyn Res. 1994;14(2):71–101. ISSN 0169-5983.
  • Zhu Y, Antonia RA. On the correlation between enstrophy and energy dissipation rate in a turbulent wake. Appl Sci Res. 1996;57(3):337–347.
  • Donzis DA, Yeung PK, Sreenivasan KR. Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys Fluids. 2008;20(4):045108. DOI: 10.1063/1.2907227.
  • Guala M, Liberzon A, Tsinober A, et al. An experimental investigation on Lagrangian correlations of small-scale turbulence at low Reynolds number. J Fluid Mech. 2007;574:405–427. DOI: 10.1017/S0022112006004204.
  • Mandelbrot BB. The fractal geometry of nature. New York (NY): Henry Holt and Company; 1982. ISBN 9780716711865. Available from: https://books.google.com/books?id= 0R2LkE3N7-oC.
  • Johnson PL, Meneveau C. A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields. J Fluid Mech. 2016;804:387–419. DOI: 10.1017/jfm.2016.551.
  • Turk MJ, Smith BD, Oishi JS, et al. Yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys J Suppl Ser. 2011;192:9.
  • Hentschel HGE, Procaccia I. The infinite number of generalized dimensions of fractals and strange attractors. Phys Non Phenom. 1983;8(3):435–444.
  • Johnson PL, Meneveau C. Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence. Phys Fluids. 2015;27(8):085110.
  • Yeung PK, Donzis DA, Sreenivasan KR. Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J Fluid Mech. 2012;700:5–15. DOI: 10.1017/jfm.2012.5.
  • Borue V, Orszag SA. Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J Fluid Mech. 1998;366:1–31.
  • Vieillefosse P. Local interaction between vorticity and shear in a perfect incompressible fluid. J de Phys. 1982;43(6):837–842.
  • Meneveau C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Ann Rev Fluid Mech. 2011b;43:219–245.
  • Naso A, Pumir A, Chertkov M. Statistical geometry in homogeneous and isotropic turbulence. J Turbul. 2007;8:N39. DOI: 10.1080/14685240701615978.
  • Martín J, Ooi A, Chong MS, et al. Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys Fluids. 1998;10(9):2336–2346.
  • Hunt JCR, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. Proceedings of Summer Program. Stanford (CA): CTR; 1988.
  • Chong MS, Perry AE, Cantwell BJ. A general classification of three-dimensional flow fields. Phys Fluids. 1990;2:765–777.
  • Nomura KK, Post GK. The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J Fluid Mech. 1998;377:65–97. DOI: 10.1017/S0022112098003024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.