303
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows

, &
Pages 446-462 | Received 15 May 2017, Accepted 01 Apr 2018, Published online: 27 Apr 2018

References

  • McNamara GR, Zanetti G. Use of the boltzmann equation to simulate lattice-gas automata. Phys Rev Lett. 1988;61(20):2332.
  • Higuera F, Succi S, Benzi R. Lattice gas dynamics with enhanced collisions. Europhys Lett. 1989;9(4):345–349.
  • Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory and applications. Phys Rep. 1992;222(3):145–197.
  • Chen S, Doolen G. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30(1):329–364.
  • Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Clarendon; 2001.
  • Chen H, Kandasamy S, Orszag S, et al. Extended Boltzmann kinetic equation for turbulent flows. Science. 2003;301(5633):633–636.
  • Succi S. Lattice Boltzmann 2038. Europhys Lett. 2015;109(5):50001–50007.
  • Succi S. Chimaera simulation of complex states of flowing matter. Phil Trans R Soc A. 2016;374(2080):20160151.
  • Montgomery D, Doolen GD. Magnetohydrodynamic cellular automata. Phys Lett A. 1987;120(5):229–231.
  • Chen H, Matthaeus W, Klein L. An analytic theory and formulation of a local magnetohydrodynamic lattice gas model. Phys Fluids. 1988;31(6):1439–1455.
  • Martínez DO, Chen S, Matthaeus WH. Lattice boltzmann magnetohydrodynamics. Phys Plasmas. 1994;1(6):1850–1867.
  • Succi S, Vergassola M, Benzi R. Lattice boltzmann scheme for two-dimensional magnetohydrodynamics. Phys Rev A. 1991;43:4521–4524. Available from: http://link.aps.org/doi/10.1103/PhysRevA.43.4521.
  • Dellar PJ. Lattice kinetic schemes for magnetohydrodynamics. J Comput Phys. 2002;179(1):95–126.
  • Dellar PJ. Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J Comput Phys. 2003;190(2):351–370.
  • Orszag SA, Tang CM. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J Fluid Mech. 1979;90(1):129–143.
  • Pattison M, Premnath K, Morley N, et al. Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications. Fusion Eng Des. 2008;83(4):557–572.
  • Frisch U, Pouquet A, Sulem PL, et al. The dynamics of two-dimensional ideal MHD. J Mec Theor et Appl. 1983;1:191–216.
  • Klapper I, Rado A, Tabor M. A lagrangian study of dynamics and singularity formation at magnetic null points in ideal three-dimensional magnetohydrodynamics. Phys Plasmas. 1996;3(11):4281–4283.
  • Grauer R, Marliani C. Current-sheet formation in 3D ideal incompressible magnetohydrodynamics. Phys Rev Lett. 2000;84(21):4850.
  • Chen H, Teixeira C, Molvig K. Digital physics approach to computational fluid dynamics: some basic theoretical features. Int J Mod Phys C. 1997;08(4):675–684.
  • Latt J, Chopard B. Lattice boltzmann method with regularized pre-collision distribution functions. Math Comput Simul. 2006;72(2–6):165–168.
  • Qian YH, Orszag SA. Lattice bgk models for the Navier-Stokes equation: nonlinear deviation in compressible regimes. Europhys Lett. 1993;21(3):255.
  • Nie XB, Shan X, Chen H. Galilean invariance of lattice Boltzmann models. EPL. 2008;81(3):34005.
  • Chen Y, Ohashi H, Akiyama M. Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Phys Rev E. 1994;50:2776–2783.
  • Qian YH, Zhou Y. Complete galilean-invariant lattice BGK models for the Navier-Stokes equation. Europhys Lett. 1998;42(4):359.
  • Házi G, Kávrán P. On the cubic velocity deviations in lattice Boltzmann methods. J Phys A Math Gen. 2006;39(12):3127.
  • Keating B, Vahala G, Yepez J, et al. Entropic lattice Boltzmann representations required to recover Navier-Stokes flows. Phys Rev E. 2007;75(3):036712.
  • Dellar PJ. Lattice Boltzmann algorithms without cubic defects in galilean invariance on standard lattices. J Comput Phys. 2014;259:270–283.
  • d’Humières D. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos Trans R Soc A. 2002;360(1792):437–451.
  • Chen H, Gopalakrishnan P, Zhang R. Recovery of galilean invariance in thermal lattice Boltzmann models for arbitrary Prandtl number. Int J Mod Phys C. 2014;25(10):1450046.
  • Boghosian BM, Love PJ, Coveney PV, et al. Galilean-invariant lattice-Boltzmann models with H theorem. Phys Rev E. 2003;68(2):025103.
  • Vahala G, Keating B, Soe M, et al. MHD turbulence studies using lattice Boltzmann algorithms. Commun Comput Phys. 2008;4:624–646.
  • Geier M, Greiner A, Korvink J. Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys Rev E. 2006;73(6):066705.
  • Geier M, Greiner A, Korvink J. Properties of the cascaded lattice Boltzmann automaton. Int J Mod Phys C. 2007;18(4):455–462.
  • Geier M, Greiner A, Korvink J. A factorized central moment lattice Boltzmann method. Eur Phys J Spec Top. 2009;171(1):55–61.
  • Premnath K, Banerjee S. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments. Phys Rev E. 2009;80(3):036702.
  • Premnath K, Banerjee S. On the three-dimensional central moment lattice Boltzmann method. J Stat Phys. 2011;143(4):747–794.
  • Geier M, Schönherr M, Pasquali A, et al. The cumulant lattice Boltzmann equation in three dimensions: theory and validation. Comput Math Appl. 2015;70(4):507–547.
  • Lycett-Brown D, Luo K. Multiphase cascaded lattice Boltzmann method. Comput Math Appl. 2014;67(2):350–362.
  • De Rosis A. Nonorthogonal central-moments-based lattice Boltzmann scheme in three dimensions. Phys Rev E. 2017;95:013310.
  • De Rosis A. Non-orthogonal central moments relaxing to a discrete equilibrium: a d2q9 lattice Boltzmann model. Europhys Lett. 2017;116(4):44003.
  • Mininni P, Pouquet A, Montgomery D. Small-scale structures in three-dimensional magnetohydrodynamic turbulence. Phys Rev Lett. 2006;97(24):244503.
  • Alexakis A, Mininni PD, Pouquet A. Shell-to-shell energy transfer in magnetohydrodynamics. I. steady state turbulence. Phys Rev E. 2005;72:046301. Available from: http://link.aps.org/doi/10.1103/PhysRevE.72.046301.
  • Politano H, Pouquet A, Sulem PL. Inertial ranges and resistive instabilities in two-dimensional magnetohydrodynamic turbulence. Phys Fluids B. 1989;1(12):2330–2339.
  • Pouquet A. On two-dimensional magnetohydrodynamic turbulence. J Fluid Mech. 1978;88(1):1–16.
  • Montessori A, Prestininzi P, Rocca ML, et al. Lattice Boltzmann approach for complex non-equilibrium flows. Phys Rev E. 2015;92:043308.
  • Lai H, Xu A, Zhang G, et al. Nonequilibrium thermodynamic effects on the Rayleigh-Taylor instability in compressible flows. Phys Rev E. 2016;94:023106.
  • Lin C, Luo KH, Fei L, et al. A multi-component discrete Boltzmann model for nonequilibirum reactive flows. Sci Rep. 2017;7:14580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.