526
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Probability density function of velocity fluctuations in a rectangular T-junction duct

, , , , &
Pages 621-646 | Received 13 Oct 2017, Accepted 21 May 2018, Published online: 21 Jun 2018

References

  • Trip R, Fransson JHM. Boundary layer modification by means of wall suction and the effect on the wake behind a rectangular forebody. Phys Fluids. 2014;26:125105. doi: 10.1063/1.4904376
  • Cambonie T, Aider JL. Transition scenario of the round jet in crossflow topology at low velocity ratios. Phys Fluids. 2014;26:084101. doi:10.1063/1.4891850.
  • D’Auria F, Galassi GM. Scaling in nuclear reactor system thermal-hydraulics. Nucl Eng Des. 2010;240:3267–3293. doi: 10.1016/j.nucengdes.2010.06.010
  • Wu B, Yin YT, Lin M, et al. Mean pressure distributions around a circular cylinder in the branch of a T-junction with/without vanes. Appl Therm Eng. 2015;88:82–93. doi: 10.1016/j.applthermaleng.2014.12.025
  • Perez-Garcia J, Sanmiguel-Rojas E, Viedma A. New experimental correlations to characteristize compressible flow losses at 90-degree T-junctions. Exp Therm Fluid Sci. 2009;33:261–266. doi: 10.1016/j.expthermflusci.2008.09.002
  • Neofyton P, Housiadas C, Tsangaris SG, et al. Newtonian and power-law fluid flow in a T-junction of rectangular ducts. Theor Comp Fluid Dyn. 2014;28:233–256. doi: 10.1007/s00162-013-0311-4
  • Hassan JM, Mohammed WS, Mohamed TA, et al. Review on single-phase fluid flow distribution in manifold. Int J Sci Res (IJSR). 2014;3(1):325–330.
  • Hosseini SM, Yuki K, Hashizume KYH. Experimental investigation of flow field structure in mixing tee. ASME J Fluids Eng. 2009;131:051103. doi: 10.1115/1.3112383
  • Solehati N, Bae J, Sasmito AP. Numerical investigation of mixing performance in microchannel T-junction with wavy structure. Comput Fluids. 2014;96:10–19. doi: 10.1016/j.compfluid.2014.03.003
  • Balan CM, Broboana D, Balan C. Mixing process of immiscible fluids in microchannels. Int J Heat Fluid Flow. 2010;31:1125–1133. doi: 10.1016/j.ijheatfluidflow.2010.06.008
  • Liepsch D, Moravee S, Rastogi AK, et al. Measurement and calculations of laminar flow in a ninety degree bifurcation. J Biomech. 1982;15:473–485. doi: 10.1016/0021-9290(82)90001-X
  • Chen KK, Rowley CW, Stone HA. Vortex dynamics in a pipe T-junction: recirculation and sensitivity. Phys Fluids. 2015;27:034107. doi: 10.1063/1.4916343
  • Nikolaidis NM, Mathioulakis DS. Axial and secondary flow study in a 90 deg bifurcation under pulsating conditions using PIV. ASME J Fluids Eng. 2002;124(2):505–511. doi: 10.1115/1.1470478
  • Schinas D, Mathioulakis DS. Pulsating flow in a 90 degree bifurcation. ASME J Fluids Eng. 2000;122:569–575. doi: 10.1115/1.1285964
  • Costa NP, Maia R, Proenca MF, et al. Edge effects on the flow characteristics in a 90 deg Tee junction. ASME J Fluids Eng. 2006;128:1204–1217. doi: 10.1115/1.2354524
  • Louda P, Kozel K, Prihoda J, et al. Numerical solution of incompressible flow through branched channels. Comput Fluids. 2011;46:318–324. doi: 10.1016/j.compfluid.2010.12.003
  • Yin YT, Lin M, Xu XF, et al. Mean velocity distributions under flow in the mainstream of a T pipe junction. Chem Eng Trans. 2015;45:1099–1104.
  • Tomor A, Kristof G. Hydraulic loss of finite length dividing junctions. ASME J Fluids Eng. 2017;139:031104. doi: 10.1115/1.4034876
  • Oyewola O, Djenidi L, Antonia RA. Combined influence of the Reynolds number and localised wall suction on a turbulent boundary layer. Exp Fluids. 2003;35:199–206. doi: 10.1007/s00348-003-0658-1
  • Djenidi L, Agrawal A, Antonia RA. Anisotropy measurements in the boundary layer over a flat plate with suction. Exp Therm Fluid Sci. 2009;33:1106–1111. doi: 10.1016/j.expthermflusci.2009.06.006
  • Kurian T, Fransson JHM. Transient growth in the asymptotic suction boundary layer. Exp Fluids. 2011;51:771–784. doi: 10.1007/s00348-011-1095-1
  • Mariotti A, Buresti G. Experimental investigation on the influence of boundary layer thickness on the base pressure and near-wake flow features of an axisymmetric blunt-based body. Exp Fluids. 2013;54:139. doi: 10.1007/s00348-013-1612-5
  • Rowe A, Fry ALA, Motallebi F. Influence of boundary-layer thickness on base pressure and vortex shedding frequency. AIAA J. 2001;39:754–756. doi: 10.2514/2.1377
  • Schlatter P, Orlu R. Turbulent asymptotic suction boundary layers studied by simulation. J Phys: Conf Ser. 2011;318:022020.
  • Yoshioka S, Fransson JHM, Alfredsson PH. Free stream turbulence induced disturbances in boundary layers with wall suction. Phys Fluids. 2004;16:3530–3539. doi: 10.1063/1.1775222
  • Feldmann D, Bauer C, Wagner C. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow. J Turbul. 2018. doi:10.1080/14685248.2017.1418086.
  • Samanta G, Housiadas KD, Handler RA, et al. Effects of viscoelasticity on the probability density functions in turbulent channel flow. Phys Fluids. 2009;21:115106. doi: 10.1063/1.3258758
  • Kambea T, Hatakeyama N. Statistical laws and vortex structures in fully developed turbulence. Fluid Dyn Res. 2000;27:247–267. doi: 10.1016/S0169-5983(00)00007-1
  • Vouros AP, Panidis TH. Turbulent properties of a low Reynolds number, axisymmetric, pipe jet. Exp Therm Fluid Sci. 2013;44:42–50. doi: 10.1016/j.expthermflusci.2012.05.012
  • Calif R. PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation. Appl Energy. 2012;99:173–182. doi: 10.1016/j.apenergy.2012.05.007
  • Lamballais E, Lesieur M, Metais O. Probability distribution functions and coherent structures in a turbulent channel. Phys Rev E. 1997;56:6761–6766. doi: 10.1103/PhysRevE.56.6761
  • Bauer C, Feldmann D, Wagner C. On the convergence and scaling of high-order statistical moments in turbulent pipe flow using direct numerical simulations. Phys Fluids. 2017;29:125105. doi:10.1063/1.4996882.
  • Keirsbulck L, Labraga L, Gad-el-Hak M. Statistical properties of wall shear stress fluctuations in turbulent channel flows. Int J Heat Fluid Flow. 2012;37:1–8. doi: 10.1016/j.ijheatfluidflow.2012.04.004
  • Camussi R, Di Felice F. Statistical properties of vortical structures with spanwise vorticity in zero pressure gradient turbulent boundary layers. Phys Fluids. 2006;18:035108. doi:10.106 3/1.2185684. doi: 10.1063/1.2185684
  • Balachandar S, Sirovich L. Probability distribution functions in turbulent convection. Phys Fluids A. 1991;3:919–927. doi:10.1063/1.857968.
  • Kim EJ, Liu HL, Anderson J. Probability distribution function for self-organization of shear flows. Phys Plasmas. 2009;16:052304. doi:10.1063/1.3132631.
  • Boeck T, Krasnov D, Schumacher J. Statistics of velocity gradients in wall-bounded shear flow turbulence. Physica D. 2010;239:1258–1263. doi: 10.1016/j.physd.2009.10.004
  • Drozdz A. Influence of pressure gradient on streamwise skewness factor in turbulent boundary layer. J Physics: Conf Ser. 2014;530:012061.
  • Chin C, Ooi ASH, Marusic I, et al. The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys Fluids. 2010;22:115107. doi: 10.1063/1.3489528
  • Kulkarni AA, Joshi JB, Kumar VR, et al. Wavelet transform of velocity time data for the analysis of turbulent structures in a bubble column. Chem Eng Sci. 2001;56:5305–5315. doi: 10.1016/S0009-2509(01)00264-0
  • Qiu X, Luo JP, Huang YX. Scale analysis of turbulent channel flow with varying pressure gradient. J Hydrodyn. 2014;26:129–136. doi: 10.1016/S1001-6058(14)60015-9
  • Ligrani PM, Bradshaw P. Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp Fluids. 1987;5:407–417. doi: 10.1007/BF00264405
  • Gessner FB, Po JK, Emery AF, et al. Measurements of developing turbulent flow in a square duct. In: F Durst, editor. Turbulent shear flows 1. New York: Springer; 1979. p. 119–136.
  • Hutchins N, Nickels TB, Marusic I, et al. Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech. 2009;635:103–136. doi: 10.1017/S0022112009007721
  • Chin CC, Hutchins N, Ooi ASH, et al. Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence. Meas Sci Technol. 2009;20:115401. doi: 10.1088/0957-0233/20/11/115401
  • Lee M, Moser R. Direct numerical simulation of turbulent channel flow up to Reτ≈5200. J Fluid Mech. 2015;774:395–415. doi: 10.1017/jfm.2015.268
  • Hutchins N, Marusic I. Large-scale influences in near-wall turbulence. Phil Trans R Soc A. 2007;365:647–664. doi: 10.1098/rsta.2006.1942
  • Monty JP, Hutchins N, Ng HCH, et al. A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech. 2009;632:431–442. doi: 10.1017/S0022112009007423
  • Marusic I, Mathis R, Hutchins N. High Reynolds number effects in wall turbulence. Int J Heat Fluid Flow. 2010;31:418–428. doi: 10.1016/j.ijheatfluidflow.2010.01.005
  • Balakumar BJ, Adrian RJ. Large-and very-large-scale motions in channel and boundary-layer flows. Phil Trans R Soc A. 2007;365:665–681. doi: 10.1098/rsta.2006.1940
  • Tallura KM, Baidya R, Hutchins M, et al. Amplitude modulation of all three velocity components in turbulent boundary layers. J Fluid Mech. 2014;746:R1–11. doi: 10.1017/jfm.2014.132
  • Lee J, Ahn J, Sung HJ. Comparison of large- and very-large-scale motions in turbulent pipe and channel flows. Phys Fluids. 2015;27:025101. doi: 10.1063/1.4906805
  • Jimėnez J, Kawahara G. Dynamics of wall-bounded turbulence. In: PA Davidson, Y Kaneda, KR Sreenivasan, editors. Ten chapters in turbulence. Cambridge: Cambridge University Press; 2013. p. 221–268.
  • Onorato M, Camussi R, Iuso G. Small scale intermittency and bursting in a turbulent channel flow. Phys Rev E. 2000;61:1447–1454. doi: 10.1103/PhysRevE.61.1447

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.