337
Views
0
CrossRef citations to date
0
Altmetric
Articles

Non-equilibrium turbulent phenomena in transitional channel flows

, &
Pages 731-753 | Received 06 Oct 2017, Accepted 06 Aug 2018, Published online: 22 Aug 2018

References

  • Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proc Math Phys Sci. 1941;30:301.
  • Hurst D, Vassilicos JC. Scalings and decay of fractal-generated turbulence. Phys Fluids. 2007;19(3):035103. doi: 10.1063/1.2676448
  • Seoud RE, Vassilicos JC. Idissipation and decay of fractal-generated turbulence. Phys Fluids. 2007;19:105108. doi: 10.1063/1.2795211
  • Mazellier N, Vassilicos JC. Turbulence without Richardson–Kolmogorov cascade. Phys Fluid. 2010;22(7):075101. doi: 10.1063/1.3453708
  • Laizet S, Lamballais E, Vassilicos JC. A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence. Comput Fluids. 2010;39:471. doi: 10.1016/j.compfluid.2009.09.018
  • Valente PC, Vassilicos JC. The decay of turbulence generated by a class of multiscale grids. J Fluid Mech. 2011;687:300. doi: 10.1017/jfm.2011.353
  • Krogstad PA, Davidson PA. Freely decaying, homogeneous turbulence generated by multi-scale grids. J Fluid Mech. 2011;680:417. doi: 10.1017/jfm.2011.169
  • Valente PC, Vassilicos JC. Universal dissipation scaling for nonequilibrium turbulence. Phys Rev Lett. 2012;108:214503. doi: 10.1103/PhysRevLett.108.214503
  • Nagata K, Sakai Y, Inaba T, et al. Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence. Phys Fluids. 2013;25:065102. doi: 10.1063/1.4811402
  • Valente PC, Vassilicos JC. The non-equilibrium region of grid-generated decaying turbulence. J Fluid Mech. 2014;744:5–37. doi: 10.1017/jfm.2014.41
  • Hearst RJ, Lavoie P. Decay of turbulence generated by a square-fractal-element grid. J Fluid Mech. 2014;741:567–584. doi: 10.1017/jfm.2013.684
  • Isaza JC, Salazar R, Warhaft Z. On grid-generated turbulence in the near- and far field regions. J Fluid Mech. 2014;753:402–426. doi: 10.1017/jfm.2014.375
  • Zhou Y, Nagata K, Sakai Y, et al. Relevance of turbulence behind the single square grid to turbulence generated by regular- and multiscale-grids. Phys Fluids. 2014;26:075105.
  • Hearst RJ, Lavoie P. Velocity derivative skewness in fractal-generated, non-equilibrium grid turbulence. Phys Fluids. 2015;27:071701. doi: 10.1063/1.4926356
  • Goto S, Vassilicos JC. Energy dissipation and flux laws for unsteady turbulence. Phys Lett A. 2015;379(16–17):1144–1148. doi: 10.1016/j.physleta.2015.02.025
  • Vassilicos JC. Dissipation in turbulent flows. Annu Rev Fluid Mech. 2015;47:95–114. doi: 10.1146/annurev-fluid-010814-014637
  • Bos WJT, Rubinstein R. Dissipation in unsteady turbulence. Phys Rev Fluids. 2017;2:022601. doi: 10.1103/PhysRevFluids.2.022601
  • Kachanov YS. Physical mechanisms of laminar-boundary-layer transition. Annu Rev Fluid Mech. 1994;26:411–482. doi: 10.1146/annurev.fl.26.010194.002211
  • Klerser L. Numerical simulation of transition in wall-bounded shear flows. Annu Rev Fluid Mech. 1991;23:495–537. doi: 10.1146/annurev.fl.23.010191.002431
  • Saiki EM, Biringen S, Danabasoglu G, Streett CL. Spatial simulation of secondary instability in plane channel flow: Comparison of k- and h-type disturbances. J Fluid Mech. 1993;253:485–507. doi: 10.1017/S0022112093001879
  • Matsubara M, Alfredsson PH. Disturbance growth in boundary layers subjected to freestream turbulence. J Fluid Mech. 2001;430:149–168. doi: 10.1017/S0022112000002810
  • Sano M, Tamai K. A universal transition to turbulence in channel flow. Nat Phys. 2015;12(3):249–253. doi: 10.1038/nphys3659
  • Saric WS, Reed HL, Kerschen EJ. Boundary-layer receptivity to freestream disturbances. Annu Rev Fluid Mech. 2002;34:291–319. doi: 10.1146/annurev.fluid.34.082701.161921
  • Klebanoff PS, Tidstrom KD, Sargent LM. The three-dimensional nature of boundary-layer instability. J Fluid Mech. 1962;12:1–34. doi: 10.1017/S0022112062000014
  • Bayly BJ, Orszag SA, Herber T. Instability mechanisms in shear-flow transition. Annu Rev Fluid Mech. 1988;20:359–391. doi: 10.1146/annurev.fl.20.010188.002043
  • Henningson DS, Lundbladh A, Johansson AV. A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. J Fluid Mech. 1993;250:169–207. doi: 10.1017/S0022112093001429
  • Townsend AA. Equilibrium layers and wall turbulence. J Fluid Mech. 1961;11:97. doi: 10.1017/S0022112061000883
  • Aubertine CD, Eaton JK. Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient. J Fluid Mech. 2005;532:345–364. doi: 10.1017/S0022112005004143
  • Dixit SA, Ramesh ON. Determination of skin friction in strong pressuregradient equilibrium and near-equilibrium turbulent boundary layers. Exp Fluids. 2009;47(6):1045–1058. doi: 10.1007/s00348-009-0698-2
  • Kawai S, Larsson J. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers. Phys Fluids. 2013;25:015105. doi: 10.1063/1.4775363
  • Scotti A, Piomelli U. Numerical simulation of pulsating turbulent channel flow. Phys Fluids. 2001;13:1367–1384. doi: 10.1063/1.1359766
  • Costamagna P, Vittori G, Blondeaux P. Coherent structures in oscillatory boundary layers. J Fluid Mech. 2003;474:1–33. doi: 10.1017/S0022112002002665
  • Spalart PR, Baldwin BS. Direct simulation of a turbulent oscillating boundary layerIn Turbulent shear flows Vol. 6. Berlin: Springer; 1987. p. 417–440.
  • Merkli P, Thomann H. Transition to turbulence in oscillating pipe flow. J Fluid Mech. 1975;68:567–575. doi: 10.1017/S0022112075001826
  • Mazzuoli M, Vittori G, Blondeaux P. Turbulent spots in oscillatory boundary layers. J Fluid Mech. 2011;685:365–376. doi: 10.1017/jfm.2011.320
  • Jensen BL, Sumer BM, Fredsoe J. Turbulent oscillatory boundary layers at high Reynolds numbers. J Fluid Mech. 1989;206:265–297. doi: 10.1017/S0022112089002302
  • Tang YF, Akhavan R. Computations of equilibrium and non-equilibrium turbulent channel flows using a nested-les approach. J Fluid Mech. 2016;793:709–748. doi: 10.1017/jfm.2016.137
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 1991;3(7):1760–1765. doi: 10.1063/1.857955
  • Xu CX, Zhang ZS, Nieuwstadt FTM. Origin of high kurtosis in viscous sublayer. Direct numerical simulation and experiment. Phys Fluids. 1996;8:1938–1942. doi: 10.1063/1.868973
  • Yang ZX, Cui GX, Xu CX, et al. Large eddy simulation of rotating turbulent channel flow with a new dynamic global-coefficient nonlinear subgrid stress model. J Turbul. 2012;13(1):48. doi: 10.1080/14685248.2012.726996
  • Ma B, Van Doorne CWH, Zhang Z, et al. On the spatial evolution of a wall-imposed periodic disturbance in pipe Poiseuille flow at Re = 3000. Part 1. Subcritical disturbance. J Fluid Mech. 1999;398:181–224. doi: 10.1017/S0022112099006199
  • Zang TA, Gilbert N, Kleiser L. Direct numerical simulation of the transitional zone. Instability Transit. 1990;2:283–299. doi: 10.1007/978-1-4612-3432-6_23
  • Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to . Phys Fluids. 1999;11:943. doi: 10.1063/1.869966
  • Zagarola MV, Smits AJ. Mean-flow scaling of turbulent pipe flow. J Fluid Mech. 1998;373:33–79. doi: 10.1017/S0022112098002419
  • Kerr RM. Higher-order derivative correlations and the alignment of small-scale structure in isotropic numerical turbulence. J Fluid Mech. 1985;153:31–58. doi: 10.1017/S0022112085001136
  • Kraichnan R, Panda R. Depression of nonlinearity in decaying isotropic turbulence. Phys Fluids. 1988;31:2395. doi: 10.1063/1.866591
  • Sreenivasan KR. On the scaling of the turbulence energy dissipation rate. Phys Fluids. 1984;27:1048. doi: 10.1063/1.864731
  • Bos WJT, Shao L, Bertoglio JP. Spectral imbalance and the normalized dissipation rate of turbulence. Phys Fluids. 2007;19:045101.
  • Goto S, Vassilicos JC. The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys Fluids. 2014;21(3):035104. doi: 10.1063/1.3085721
  • Fang L, Zhu Y, Liu YW, et al. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling. Phys Lett A. 2015;379(38):2331–2336. doi: 10.1016/j.physleta.2015.05.029
  • Cui GX, Zhou HB, Zhang ZS, et al. A new dynamic subgrid eddy viscosity model with application to turbulent channel flow. Phys Fluids. 2004;16(8):2835–2842. doi: 10.1063/1.1762911
  • Shao L, Zhang ZS, Cui GX, et al. Subgrid modeling of anisotropic rotating homogeneous turbulence. Phys Fluids. 2005;17(11):115106. doi: 10.1063/1.2130748
  • Ayyalasomayajula S, Warhaft Z. Nonlinear interactions in strained axisymmetric high-Reynolds-number turbulence. J Fluid Mech. 2006;566:273–307. doi: 10.1017/S0022112006002199
  • Bos WJT, Chevillard L, Scott J, et al. Reynolds number effects on the velocity increment skewness in isotropic turbulence. Phys Fluids. 2012;24:015108.
  • Fang L, Zhang YJ, Fang J, et al. Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Phys Rev E. 2016;94(2):023114. doi: 10.1103/PhysRevE.94.023114
  • Krogstad PA, Davidson PA. Near-field investigation of turbulence produced by multi-scale grids. Phys Fluids. 2012;24:035103.
  • Brun C, Friedrich R. Modelling the SGS tensor Tij: An issue in the dynamic approach. Phys Fluids. 2001;13(8):2373–2385. doi: 10.1063/1.1378037
  • Fang L, Shao L, Bertoglio JP, Cui G, et al. An improved velocity increment model based on Kolmogorov equation of filtered velocity. Phys Fluids. 2009;21(6):065108. doi: 10.1063/1.3153911
  • Rubinstein R, Clark TT. ‘Equilibrium’ and ‘non-equilibrium’ turbulence. Theor Appl Mech Lett. 2017;7(5):301. doi: 10.1016/j.taml.2017.09.010
  • Meldi M, Sagaut P. Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence. J Turbul. 2018;19(5):390–413. doi: 10.1080/14685248.2018.1450506
  • Fang L, Zhao HK, Lu LP, et al. Quantitative description of non-equilibrium turbulent phenomena in compressors. Aerosp Sci Technol. 2017;71:78–89. doi: 10.1016/j.ast.2017.09.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.