96
Views
0
CrossRef citations to date
0
Altmetric
Articles

An inconsistence-free integral-based dynamic one- and two-parameter mixed model

ORCID Icon
Pages 754-797 | Received 13 Nov 2017, Accepted 06 Aug 2018, Published online: 29 Aug 2018

References

  • Sagaut P. Large eddy simulation for incompressible flows. An introduction. 3rd. Berlin: Springer; 2006.
  • Berselli L, Iliescu T, Layton W. Mathematics of large eddy simulation of turbulent flows. Berlin: Springer; 2005.
  • Lesieur M, Métais O, Comte P. Large-eddy simulations of turbulence. Cambridge: Cambridge University Press; 2005.
  • Geurts BJ. Elements of direct and large-eddy simulations. Ann Arbor (MI): Edwards; 2004.
  • Bardina J, Ferziger JH, Reynolds WC. Improved subgrid scale models for large eddy simulation. AIAA Pap. 1980;80–1357.
  • Horiuti K. A new dynamic two-parameter mixed model for large-eddy simulation. Phys Fluids. 1997;9(20):3443–3464. doi: 10.1063/1.869454
  • Sarghini F, Piomelli U, Balaras E. Scale-similar model for large-eddy simulations. Phys Fluids. 1999;11(6):1596–1607. doi: 10.1063/1.870021
  • Anderson R, Menevau C. Effects of the similarity model in finite-difference LES of isotropic turbulence using lagrangian dynamic mixed model. Flow Turbul Combus. 1999;62:201–225. doi: 10.1023/A:1009967228812
  • Denaro FM. What does finite volume-based implicit filtering really resolve in large-eddy Simulations?. J Comp Phys. 2011;230(10):3849–3883. doi: 10.1016/j.jcp.2011.02.011
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 1991;3:1760–1765. doi: 10.1063/1.857955
  • Lilly DK. A proposed modification of the Germano sub grid-scale closure method. Phys Fluids A. 1992;4(3):633–635. doi: 10.1063/1.858280
  • Zang Y, Street RL, Koseff J. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids A. 1993;5:3186–3196. doi: 10.1063/1.858675
  • Liu S, Meneveau C, Katz J. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J Fluid Mech. 1994;275:83–119. doi: 10.1017/S0022112094002296
  • Vreman B, Geurts B, Kuerten H. On the formulation of the dynamic mixed subgridscale model. Phys. Fluids. 1994;6:4057. doi: 10.1063/1.868333
  • Salvetti MV, Banerjee S. A priori tests of a new dynamic subgridscale model for finite difference large eddy simulations. Phys Fluids. 1995;7:2831–2847 doi: 10.1063/1.868779
  • Meneveau C, Katz J. Dynamic testing of subgrid models in large eddy simulation based on the Germano identity. Phys Fluids. 1999;11:245.247 doi: 10.1063/1.869873
  • Morinish Y, Vasilyev OV. A recommended modification to the dynamic two-parameter mixed subgrid scale model for large eddy simulation of wall bounded turbulent flow. Phys Fluids. 2001;13:3400. doi: 10.1063/1.1404396
  • Wang B, J. Bergstrom D. An Integral-type dynamic localization two-parameter subgrid-scale model: formulation and Simulation. Int J Comp Fluid Dynam. 2004;18(2):209–220. doi: 10.1080/10618560310001634140
  • Meneveau C. Germano identity-based subgrid-scale modeling: a brief survey of variations on a fertile theme. Phys Fluids. 2012;24:121301. doi: 10.1063/1.4772062
  • Denaro FM, De Stefano G, Iudicone D, et al. A finite volume dynamic large-eddy simulation method for buoyancy driven turbulent geophysical flows. Ocean modelling. 2007;17(3):199–218. doi: 10.1016/j.ocemod.2007.02.002
  • Denaro FM, De Stefano G. A new development of the dynamic procedure in large-eddy simulation based on a finite volume integral approach. Application to stratified turbulence. Theor Comp Fluid Dyn. 2011;25(5):315–355. doi: 10.1007/s00162-010-0202-x
  • Anderson R, Meneveau C. Effects of the similarity model in finite-difference LES of isotropic turbulence using a lagrangian dynamic mixed model. Flow Turbul Combust. 1999;62(3):201–225. doi: 10.1023/A:1009967228812
  • Park N, Mahesh K. Reduction of the Germano-identity error in the dynamic Smagorinsky model. Phys Fluids. 2009;21:065106. doi: 10.1063/1.3140033
  • Denaro FM. Analysis of three different contractions of the Germano identity in the integral-based dynamic Smagorinsky model. Comp Fiuids. 2013;72:30–45. doi: 10.1016/j.compfluid.2012.12.002
  • Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to Re =590. Phys Fluids. 1999;11(4):943–945. doi: 10.1063/1.869966
  • Denaro FM, Abba' A, Germano M, et al. LESinItaly group: a comparative test for assessing the performances of large-eddy simulation codes. Proc. of AIMETA Conference, Bologna, ISBN 978-88-906340-0-0, September 2011.
  • Geurts BJ. Inverse modeling for large-eddy simulation. Phys Fluids. 1997;9(12):3585–3587. doi: 10.1063/1.869495
  • Stolz S, Adams NA. An approximate deconvolution procedure for large-eddy simulation. Phys Fluids. 1999;11(7):1699–1701. doi: 10.1063/1.869867
  • Stolz S, Adams NA, Kleiser L. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys Fluids. 2001;13(4):997–1015. doi: 10.1063/1.1350896
  • Iannelli P, Denaro FM, De Stefano G. A Deconvolution-based fourth order fnite volume method for incompressible flows on non-uniform grids. Int J Num Meth Fluids. 2003;43(4):431–462. doi: 10.1002/fld.613
  • Aprovitola A, Denaro FM. On the application of congruent upwind discretizations for large eddy simulations. J Comp Phys. 2004;194(1):329–343. doi: 10.1016/j.jcp.2003.09.027
  • Oberai A, Wanderer J. Variational formulation of the Germano identity for the bavier–stokes equations. J Turbul. 2005;6(7):N7. doi: 10.1080/14685240500103192
  • Geurts BJ, van der Bos F. Numerically induced high-pass dynamics in large-eddy simulation. Phys Fluids. 2005;17:125103. doi: 10.1063/1.2140022
  • LeVeque RJ. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press; 2002.
  • Canuto C, Hussaini MY, Quarteroni A. Spectral methods evolution to complex geometries and applications to fluid dynamics. Berlin: Springer; 2007.
  • Morton KW, Mayers DF. Numerical solution of partial differential equations: an introduction. Cambridge: Cambridge University Press; 2005.
  • Meyers J, Sagaut P. Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models?. Phys Fluids. 2007;19:048105.
  • Denaro FM. Time-accurate intermediate boundary conditions for large eddy simulations based on projection methods. Int J Num Meth Fluids. 2005;48:869–908. doi: 10.1002/fld.965
  • Kim J, Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations. J Comp Phys. 1985;59(2):308–323. doi: 10.1016/0021-9991(85)90148-2
  • Aprovitola A, Denaro FM. Using symbolic computation software packages in production of multidimensional finite volume-based large eddy simulation codes. Int J Num Meth Fluids. 2013;71(5):562–583. doi: 10.1002/fld.3673
  • Denaro F, Abbá A, Germano M, et al. A comparative test for assessing the performances of large-eddy simulation codes. XX Congresso dell'Associazione Italiana di Meccanica Teorica e Applicata, Bologna, 12–15 Settembre 2011.
  • Denaro FM, Sarghini F. 2-D transmitral flows simulation by means of the immersed boundary method on unstructured grids. Int J Num Meth Fluids. 2002;38:1133–1158. doi: 10.1002/fld.278
  • De Stefano G, Denaro FM, Riccardi G. Analysis of 3-D backward-facing step incompressible flows via local average-based numerical procedure. Int J Num Meth Fluids. 1998;28:1073–1091. doi: 10.1002/(SICI)1097-0363(19981115)28:7<1073::AID-FLD755>3.0.CO;2-H
  • Denaro FM. A 3D second-order accurate projection-based Finite Volume code on non-staggered, non-uniform structured grids with continuity preserving properties: application to buoyancy-driven flows. Int J Num Meth Fluids. 2006;52(4):393–432. doi: 10.1002/fld.1185
  • Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comp. 1968;22:745–762. doi: 10.1090/S0025-5718-1968-0242392-2
  • Denaro FM. On the application of the Helmholtz-Hodge decomposition in projection methods for the numerical solution of the incompressible Navier-Stokes equations with general boundary conditions. Int J Num Meth Fluids. 2003;43:43–69. doi: 10.1002/fld.598
  • Almgren AS, Bell JB, Crutchfield W. Approximate projection methods: Part I. Inviscid analsysis. SIAM J Sci Comput. 2000;22(4):1139–1159. doi: 10.1137/S1064827599357024
  • Ferziger JH, Peric M. Computational methods for fluid dynamics. Berlin: Springer; 2001.
  • Aprovitola A, Denaro FM. A non-diffusive, divergence-free, Finite Volume-based double projection method on non-staggered grids. Int J Num Meth Fluids. 2007;53(7):1127–1172. doi: 10.1002/fld.1368

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.