193
Views
0
CrossRef citations to date
0
Altmetric
Articles

The fluctuating velocity field of a forced planar impinging gas jet

, &
Pages 798-825 | Received 09 Apr 2018, Accepted 31 Jul 2018, Published online: 05 Sep 2018

References

  • Arthurs D, Ziada S. The planar jet-plate oscillator. J Fluids Struct. 2011;27(1):105–120. doi: 10.1016/j.jfluidstructs.2010.10.002
  • Dogruoz MB, Ortega A, Westphal RV. Measurements of skin friction and heat transfer beneath an impinging slot jet. Exp Thermal Fluid Sci. 2015;60:213–222. doi: 10.1016/j.expthermflusci.2014.08.014
  • El Hassan M, Assoum H, Martinuzzi R, et al. Experimental investigation of the wall shear stress in a circular impinging jet. Phys Fluids (1994-present). 2013;25(7):077101.
  • Young RM, Hargather M, Settles G. Shear stress and particle removal measurements of a round turbulent air jet impinging normally upon a planar wall. J Aerosol Sci. 2013;62:15–25. doi: 10.1016/j.jaerosci.2013.04.002
  • Long J, New T. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate. Exp Fluids. 2016;57(7):1–18. doi: 10.1007/s00348-016-2206-9
  • Sodjavi K, Montagné B, Bragança P, et al. PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets. Exp Thermal Fluid Sci. 2016;70:417–436. doi: 10.1016/j.expthermflusci.2015.10.004
  • Ritcey A, McDermid JR, Ziada S. The maximum skin friction and flow field of a planar impinging gas jet. J Fluids Eng. 2017;139(10):101204. doi: 10.1115/1.4036717
  • Janetzke T, Nitsche W, Täge J. Experimental investigations of flow field and heat transfer characteristics due to periodically pulsating impinging air jets. Heat Mass Transf. 2008;45(2):193–206. doi: 10.1007/s00231-008-0410-8
  • Nirmalkumar M, Katti V, Prabhu S. Local heat transfer distribution on a smooth flat plate impinged by a slot jet. Int J Heat Mass Transf. 2011;54(1):727–738. doi: 10.1016/j.ijheatmasstransfer.2010.09.030
  • Kumar R, Wiley A, Venkatakrishnan L, et al. Role of coherent structures in supersonic impinging jetsa). Phys Fluids (1994-present). 2013;25(7):076101.
  • Iio S, Hirashita K, Katayama Y, et al. Jet flapping control with acoustic excitation. J Flow Control Meas Vis. 2013;1(2):49. doi: 10.4236/jfcmv.2013.12007
  • Kuo CW, Cluts J, Samimy M. Effects of excitation around jet preferred mode Strouhal number in high-speed jets. Exp Fluids. 2017;58(4):35. doi: 10.1007/s00348-017-2329-7
  • Ritcey A, McDermid JR, Ziada S. Effect of jet oscillation on the maximum impingement plate skin friction. J Fluids Eng. 2018;140(9):091201. doi: 10.1115/1.4039515
  • Michalke A. On the inviscid instability of the hyperbolictangent velocity profile. J Fluid Mech. 1964;19(4):543–556. doi: 10.1017/S0022112064000908
  • Freymuth P. On transition in a separated laminar boundary layer. J Fluid Mech. 1966;25(4):683–704. doi: 10.1017/S002211206600034X
  • Crow SC, Champagne F. Orderly structure in jet turbulence. J Fluid Mech. 1971;48(3):547–591. doi: 10.1017/S0022112071001745
  • Hussain AF, Zaman K. The ‘preferred mode’ of the axisymmetric jet. J Fluid Mech. 1981;110:39–71. doi: 10.1017/S0022112081000608
  • Ho CM, Nosseir NS. Dynamics of an impinging jet. part 1. the feedback phenomenon. J Fluid Mech. 1981;105:119–142. doi: 10.1017/S0022112081003133
  • Arthurs D, Ziada S. Self-excited oscillations of a high-speed impinging planar jet. J Fluids Struct. 2012;34:236–258. doi: 10.1016/j.jfluidstructs.2012.06.002
  • Arthurs D, Ziada S. Effect of nozzle thickness on the self-excited impinging planar jet. J Fluids Struct. 2014;44:1–16. doi: 10.1016/j.jfluidstructs.2013.09.021
  • Hussain A, Thompson C. Controlled symmetric perturbation of the plane jet: an experimental study in the initial region. J Fluid Mech. 1980;100(2):397–431. doi: 10.1017/S002211208000122X
  • Cohen J, Wygnanski I. The evolution of instabilities in the axisymmetric jet. part 1. the linear growth of disturbances near the nozzle. J Fluid Mech. 1987;176:191–219. doi: 10.1017/S0022112087000624
  • Raman G, Zaman KB, Rice EJ. Initial turbulence effect on jet evolution with and without tonal excitation. Phys Fluids A: Fluid Dyn. 1989;1(7):1240–1248. doi: 10.1063/1.857347
  • Rajagopalan S, Ko N. Velocity and spanwise vorticity measurements in an excited mixing layer of a plane jet. Exp Fluids. 1996;20(5):346–357. doi: 10.1007/BF00191016
  • Alekseenko S, Markovich D, Semenov V. Turbulent structure of a gas-liquid impinging jet. Fluid Dyn. 2002;37(5):684–694. doi: 10.1023/A:1021360000593
  • Olsen J, Rajagopalan S, Antonia R. Jet column modes in both a plane jet and a passively modified plane jet subject to acoustic excitation. Exp Fluids. 2003;35(3):278–287. doi: 10.1007/s00348-003-0663-4
  • Birbaud AL, Durox D, Ducruix S, et al. Dynamics of free jets submitted to upstream acoustic modulations. Phys Fluids (1994-present). 2007;19(1):013602.
  • Sato H. The stability and transition of a two-dimensional jet. J Fluid Mech. 1960;7(1):53–80. doi: 10.1017/S0022112060000049
  • Chambers F, Goldschmidt V. Acoustic interaction with a turbulent plane jet: effects on mean flow. AIAA J. 1982;20(6):797–804. doi: 10.2514/3.51137
  • Huang JM, Hsiao FB. On the mode development in the developing region of a plane jet. Phys Fluids. 1999;11(7):1847–1857. doi: 10.1063/1.870047
  • Kozlov G, Grek G, Sorokin A, et al. Influence of initial conditions at the nozzle exit on the structure of round jet. Thermophys Aeromech. 2008;15(1):55–68. doi: 10.1134/S0869864308010046
  • Hsiao FB, Huang JM. On the evolution of instabilities in the near field of a plane jet. Phys Fluids A: Fluid Dyn (1989–1993). 1990;2(3):400–412. doi: 10.1063/1.857735
  • Ziada S. Feedback control of globally unstable flows: impinging shear flows. J Fluids Struct. 1995;9(8):907–923. doi: 10.1006/jfls.1995.1051
  • Azevedo L, Webb B, Queiroz M. Pulsed air jet impingement heat transfer. Exp Thermal Fluid Sci. 1994;8(3):206–213. doi: 10.1016/0894-1777(94)90049-3
  • Yeh YL, Hsu CC, Chiang CH, et al. Vortical structure evolutions and spreading characteristics of a plane jet flow under anti-symmetric long-wave excitation. Exp Thermal Fluid Sci. 2009;33(4):630–641. doi: 10.1016/j.expthermflusci.2008.12.007
  • Samimy M, Kim JH, Kastner J, et al. Active control of high-speed and high-Reynolds-number jets using plasma actuators. J Fluid Mech. 2007;578:305–330. doi: 10.1017/S0022112007004867
  • Crawley MB, Kuo CW, Samimy M. Vortex dynamics and sound emission in an excited high-speed jet. 22nd AIAA/CEAS Aeroacoustics Conference; 2016. p. 2985.
  • Gutmark E, Ho CM. Preferred modes and the spreading rates of jets. Phys Fluids (1958–1988). 1983;26(10):2932–2938. doi: 10.1063/1.864058
  • Kozlov VV, Grek GR, Litvinenko YA. Plane jets affected by initial conditions and acoustic perturbations. New York: Springer; 2016.
  • Marsh AH. Noise measurements around a subsonic air jet impinging on a plane, rigid surface. J Acoust Soc Am. 1961;33(8):1065–1066. doi: 10.1121/1.1908894
  • Neuwerth G. Acoustic feedback of a subsonic and supersonic free jet which impinges on an obstacle. NASA TT F-15719. 1974.
  • Nosseir NS, Ho CM. Dynamics of an impinging jet. part 2. the noise generation. J Fluid Mech. 1982;116:379–391. doi: 10.1017/S0022112082000512
  • Arthurs D, Ziada S, Goodwin F. Noise generation by the gas wiping jets of continuous galvanizing lines. J Fluids Thermal Sci. 2012;1(2):85.
  • Ho CM, Huang LS. Subharmonics and vortex merging in mixing layers. J Fluid Mech. 1982;119:443–473. doi: 10.1017/S0022112082001438
  • Rockwell D, Naudascher E. Self-sustained oscillations of impinging free shear layers. Annu Rev Fluid Mech. 1979;11(1):67–94. doi: 10.1146/annurev.fl.11.010179.000435
  • Raman G. Supersonic jet screech: half-century from Powell to the present. J Sound Vib. 1999;225(3):543–571. doi: 10.1006/jsvi.1999.2181
  • Zhe J, Modi V. Near wall measurements for a turbulent impinging slot jet (data bank contribution). J Fluids Eng. 2001;123(1):112–120. doi: 10.1115/1.1343085
  • Hammad KJ, Milanovic I. Flow structure in the near-wall region of a submerged impinging jet. J Fluids Eng. 2011;133(9):091205. doi: 10.1115/1.4004907
  • Arthurs D. Self-excited oscillations of the impinging planar jet [PhD thesis]. 2012.
  • Scarano F, Riethmuller ML. Advances in iterative multigrid PIV image processing. Exp Fluids. 2000;29(1):S051–S060.
  • Melling A. Tracer particles and seeding for particle image velocimetry. Meas Sci Technol. 1997;8(12):1406. doi: 10.1088/0957-0233/8/12/005
  • Ho CM, Hsiao FB. Evolution of coherent structures in a lip jet. Structure of complex turbulent shear flow. New York: Springer; 1983. p. 121–136.
  • Maurel S, Solliec C. A turbulent plane jet impinging nearby and far from a flat plate. Exp Fluids. 2001;31(6):687–696. doi: 10.1007/s003480100327
  • Hussain AKMF, Reynolds WC. The mechanics of an organized wave in turbulent shear flow. J Fluid Mech. 1970;41(2):241–258. doi: 10.1017/S0022112070000605
  • Lumley JL. The structure of inhomogeneous turbulent flows. Moscow: Nauka; 1967.
  • Gadiraju S, Park S, Gomez-Ramirez D, et al. Application of proper orthogonal decomposition to high speed imaging for the study of combustion oscillations. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition; American Society of Mechanical Engineers; 2017. p. V04BT04A031.
  • Oberleithner K, Sieber M, Nayeri C, et al. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech. 2011;679:383–414. doi: 10.1017/jfm.2011.141
  • Meyer KE, Pedersen JM, Özcan O. A turbulent jet in crossflow analysed with proper orthogonal decomposition. J Fluid Mech. 2007;583:199–227. doi: 10.1017/S0022112007006143
  • Hammad KJ, Milanovic IM. A pod study of an impinging jet flowfield. ASME 2009 Fluids Engineering Division Summer Meeting; American Society of Mechanical Engineers; 2009. p. 1477–1485.
  • Bernero S, Fiedler H. Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in a counterflow. Exp Fluids. 2000;29(1):S274–S281. doi: 10.1007/s003480070029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.