182
Views
0
CrossRef citations to date
0
Altmetric
Articles

Energy transfer and non-linear interactions in an urban boundary layer using Stochastic Estimation

ORCID Icon, &
Pages 849-867 | Received 20 Mar 2018, Accepted 31 Aug 2018, Published online: 11 Sep 2018

References

  • Coceal O, Dobre A, Thomas TG. Unsteady dynamics and organized structures from DNS over an idealized building canopy. Int J Climatol. 2007;27:1943–1953. doi: 10.1002/joc.1549
  • Takimoto H, Sato A, Barlow JF, et al. Particle Image Velocimetry measurements of turbulent flow within outdoor and indoor urban scale models and flushing motions in urban canopy layers. Bound Layer Meteorol. 2011;140:295–314. doi: 10.1007/s10546-011-9612-6
  • Perret L, Savory E. Large-scale structures over a single street canyon immersed in an urban-type boundary layer. Bound Layer Meteorol. 2013;148:111–131. doi: 10.1007/s10546-013-9808-z
  • Mathis R, Hutchins N, Marusic I. A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows. J Fluid Mech. 2011;681:537–566. doi: 10.1017/jfm.2011.216
  • Hutchins N, Marusic I. Large-scale influences in near-wall turbulence. Phil Trans R Soc A. 2007;365:647–664. doi: 10.1098/rsta.2006.1942
  • Mathis R, Hutchins N, Marusic I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech. 2009;628:311–337. doi: 10.1017/S0022112009006946
  • Mathis R, Marusic I, Hutchins N, et al. The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys Fluids. 2011;23:121702. doi: 10.1063/1.3671738
  • Marusic I, Mathis R, Hutchins N. A wall-shear stress predictive model. Proceedings of 13th European Turbulence Conference; 2011 Sept 12–15; Warsaw, Poland.
  • Inoue M, Mathis R, Marusic I, et al. Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys Fluids. 2012;24:075102. doi: 10.1063/1.4731299
  • Hutchins N, Monty JP, Ganapathisubramani B, et al. Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J Fluid Mech. 2011;673:255–285. doi: 10.1017/S0022112010006245
  • Talluru KM, Baidya R, Hutchins N, et al. Amplitude modulation of all three velocity components in turbulent boundary layers. J Fluid Mech. 2014;746:1–11. doi: 10.1017/jfm.2014.132
  • Squire DT, Baars WJ, Hutchins N, et al. Inner-outer interactions in rough-wall turbulence. J Turb. 2016;17:1159–1178. doi: 10.1080/14685248.2016.1235278
  • Blackman K, Perret L. Non-linear interactions in a boundary layer developing over an array of cubes using stochastic estimation. Phys Fluid. 2016;28:095108. doi: 10.1063/1.4962938
  • Blackman K, Perret L, Savory E. Effect of upstream flow regime and canyon aspect ratio on non-linear interactions between a street canyon flow and the overlying boundary layer. Bound Layer Meteorol. 2018; in press.
  • Nadeem M, Lee JH, Lee J, et al. Turbulent boundary layers over sparsely-spaced rod-roughened walls. Int J Heat Fluid Flow. 2015;56:16–27. doi: 10.1016/j.ijheatfluidflow.2015.06.006
  • Anderson W. Amplitude modulation of streamwise velocity fluctuations in the roughness sub-layer: evidence from large-eddy simulations. J Fluid Mech. 2016;789:567–588. doi: 10.1017/jfm.2015.744
  • Baars WJ, Hutchins N, Marusic I. Spectral stochastic estimation of high-Reynolds number wall-bounded turbulence for a refined inner-outer interaction model. Phys Rev Fluids. 2016;1:054406. doi: 10.1103/PhysRevFluids.1.054406
  • Blackman K. Interactions multi-échelles entre la basse atmosphère et la canopée urbaine [dissertation]. Nantes (FR): Ecole Centrale de Nantes; 2017.
  • Castro I, Cheng H, Reynolds R. Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Bound Layer Meteorol. 2006;118:109–131. doi: 10.1007/s10546-005-5747-7
  • Blackman K, Perret L, Calmet I, et al. Turbulent kinetic energy budget in the boundary layer developing over an Urban-like rough wall using PIV. Phys Fluid. 2017;29:085113. doi: 10.1063/1.4997205
  • Hussain F. Coherent structures – reality and myth. Phys Fluids. 1983;26:2816–2838. doi: 10.1063/1.864048
  • Hussain F. Coherent structures and turbulence. J Fluid Mech. 1986;173:303–356. doi: 10.1017/S0022112086001192
  • König O, Schlüter J, Fiedler HE. The decelerated mixing layer controlled by two frequencies. Advances in Turbulent studies: Progress in Aeronautics. 8th Beer-Sheva International Seminar on MHD-Flows and Turbulence; 1996; Israel.
  • König O, Schlüter J, Fiedler HE. Excitation of mixing layers with two frequencies. Euromech Colloquium 361, Active Control of Turbulent Shear Flows; 1997; Berlin, Germany.
  • Sarkar A, Schlüter JU. Large eddy simulations of turbulent mixing layers excited with two frequencies. Flow Turbul Combust. 2013;92:651–671. doi: 10.1007/s10494-013-9507-3
  • Sarkar A, Schlüter JU. Numerical investigation of the turbulent energy budget in the wake of freely oscillating elastically mounted cylinder at low reduced velocities. J Fluid Struct. 2013;43:441–462. doi: 10.1016/j.jfluidstructs.2013.09.013
  • Savory E, Perret L, Rivet C. Modelling considerations for examining the mean and unsteady flow in a simple urban-type street canyon. Meteorol Atmos Phys. 2013;121:1–16. doi: 10.1007/s00703-013-0254-8
  • Tropea C, Yarin A, Foss JF. Springer handbook of experimental fluid mechanics. Berlin: Springer-Verlag; 2007: p. 1403–1405.
  • Rivet C. Étude en soufflerie atmosphérique des interactions entre canopée urbaine et basse atmosphère par PIV stéréoscopique [Ph.D. dissertation]. France: Ecole Centrale de Nantes; 2014.
  • Basley J, Perret L, Mathis R. Spatial modulations of kinetic energy in the roughness sublayer. J Fluid Mech. 2018;850:584–610. doi: 10.1017/jfm.2018.458
  • Perret L, Basley J, Mathis R, et al. Atmospheric boundary layers over urban-like terrains: influence of the plan density on the roughness sublayer dynamics. Bound Layer Meteorol. 2018 in press.
  • Brunet Y, Finnigan JJ, Raupach MR. A wind tunnel study of air flow in waving wheat: single-point velocity statistics. Bound Layer Meteorol. 1994;70:95–132. doi: 10.1007/BF00712525
  • Blackman K, Perret L, Savory E, et al. Field and wind tunnel modeling of an idealized street canyon flow. Atmos Environ. 2015;106:139–153. doi: 10.1016/j.atmosenv.2015.01.067
  • Blackman K, Perret L, Savory E. Effect of upstream flow regime on street canyon flow mean turbulence statistics. Environ Fluid Mech. 2015;15:823–849. doi: 10.1007/s10652-014-9386-8
  • Tinney CE, Coiffet F, Delville J, et al. On spectral linear stochastic estimation. Exp Fluids. 2006;41:763–775. doi: 10.1007/s00348-006-0199-5
  • Guala M, Metzger M, McKeon BJ. Interactions within the turbulent boundary layer at high Reynolds number. J Fluid Mech. 2011;666:573–604. doi: 10.1017/S0022112010004544

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.