123
Views
1
CrossRef citations to date
0
Altmetric
Articles

On primitive variable behaviour near shocks in ensemble-averaged methods

&
Pages 868-888 | Received 10 Oct 2017, Accepted 05 Sep 2018, Published online: 20 Sep 2018

References

  • Garnier E, Mossi M, Sagaut P. On the use of shock-capturing schemes for large-eddy simulation. J Comput Phys. 1999;153(2):273–311. doi: 10.1006/jcph.1999.6268
  • Garnier E, Sagaut P, Deville M. Large eddy simulation of shock/homogeneous turbulence interaction. Comput Fluids. 2002;31(2):245–268. doi: 10.1016/S0045-7930(01)00022-6
  • Besnard D, Harlow FH, Rauenzahn RM, et al. Turbulence transport equations for variable-density turbulence and their relationship to two-field models. NASA STI; June 1992. (Recon Technical Report N, 92).
  • Gregoire O, Souffland D, Gauthier S. A second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov instability. J Turbul. 2005;6:N29. doi: 10.1080/14685240500307413
  • Schwarzkopf JD, Livescu D, Baltzer JR, et al. A two-length scale turbulence model for single-phase multi-fluid mixing. Flow Turbul Combust. 2016;96(1):1–43. doi: 10.1007/s10494-015-9643-z
  • Sinha K, Mahesh K, Candler GV. Modeling shock unsteadiness in shock/turbulence interaction. Phys Fluids. 2003;15(8):2290–2297. doi: 10.1063/1.1588306
  • Sinha K. Evolution of enstrophy in shock/homogeneous turbulence interaction. J Fluid Mech. 2012;707:74–110. doi: 10.1017/jfm.2012.265
  • Sinha K, Balasridhar SJ. Conservative formulation of the k-ε turbulence model for shock–turbulence interaction. AIAA J. 2013;51:1872–1882. doi: 10.2514/1.J052289
  • Vemula JB, Sinha K. Reynolds stress models applied to canonical shock-turbulence interaction. J Turbul. 2017;18(7):653–687. doi: 10.1080/14685248.2017.1317923
  • Griffond J, Soulard O, Souffland D. A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions. Phys Scr. 2010;2010(T142):014059.
  • Griffond J, Soulard O. Evaluation of augmented RSM for interaction of homogeneous turbulent mixture with shock and rarefaction waves. J Turbul. 2014;15(9):569–595. doi: 10.1080/14685248.2014.919395
  • Larsson J, Lele SK. Direct numerical simulation of canonical shock/turbulence interaction. Phys Fluids. 2009;21(12):126101. doi: 10.1063/1.3275856
  • Larsson J, Bermejo-Moreno I, Lele SK. Reynolds-and Mach-number effects in canonical shock–turbulence interaction. J Fluid Mech. 2013;717:293–321. doi: 10.1017/jfm.2012.573
  • Lee S, Lele SK, Moin P. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J Fluid Mech. 1993;251:533–562. doi: 10.1017/S0022112093003519
  • Lele SK. Shock-jump relations in a turbulent flow. Phys Fluids A Fluid Dyn. 1992;4(12):2900–2905. doi: 10.1063/1.858343
  • Deiterding R, Radovitzky R, Mauch SP, et al. A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Eng Comput. 2006;22(3–4):325–347. doi: 10.1007/s00366-006-0043-9
  • Gottlieb S, Shu C-W, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Rev. 2001;43(1):89–112. doi: 10.1137/S003614450036757X
  • Moore FK. Unsteady oblique interaction of a shock wave with a plane disturbance. NACA; 1953. (Technical Report TN 2879).
  • Ryu J, Livescu D. Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J Fluid Mech. 2014;756. doi: 10.1017/jfm.2014.477
  • Mahesh K, Lele SK, Moin P. The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J Fluid Mech. 1997;334:353–379. doi: 10.1017/S0022112097004576
  • Schwarzkopf JD, Livescu D, Gore RA, et al. Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids. J Turbul. 2011;12:N49. doi: 10.1080/14685248.2011.633084
  • Kovasznay LSG. Turbulence in supersonic flow. J Aeronaut Sci. 1953;20(10):657–674. doi: 10.2514/8.2793
  • Lee S, Lele SK, Moin P. Interaction of isotropic turbulence with shock waves: effect of shock strength. J Fluid Mech. 1997;340:225–247. doi: 10.1017/S0022112097005107
  • Gittings M, Weaver R, Clover M, et al. The RAGE radiation-hydrodynamic code. Comput Sci Discov. 2008;1(1):015005. doi: 10.1088/1749-4699/1/1/015005
  • Mahesh K. The interaction of a shock wave with a turbulent shear flow [PhD Thesis]. Stanford University; 1997.
  • Bhagatwala A, Lele SK. Interaction of a converging spherical shock wave with isotropic turbulence. Phys Fluids. 2012;24(8):035103. doi: 10.1063/1.4737892
  • Zank GP, Zhou Y, Matthaeus WH, et al. The interaction of turbulence with shock waves: a basic model. Phys Fluids. 2002;14(11):3766–3774. doi: 10.1063/1.1507772

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.