1,091
Views
75
CrossRef citations to date
0
Altmetric
Articles

A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for Lattice Boltzmann method-based large eddy simulation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1051-1076 | Received 20 Jun 2018, Accepted 15 Oct 2018, Published online: 02 Nov 2018

References

  • Garnier E, Adams N, Sagaut P. Large-eddy simulation for compressible flows. Berlin: Springer; 2009.
  • Sagaut P. Large eddy simulation for incompressible flows: an introduction. Berlin: Springer; 2005.
  • Sagaut P, Deck S, Terracol M. Multiscale and multiresolution approaches in turbulence. London: Imperial College Press; 2006.
  • Meyers J, Sagaut P. Is plane channel flow a friendly case for testing of large-eddy simulation subgrid-scale models?. Phys Fluids. 2007;19:048105.
  • Meyers J, Sagaut P, Geurts BJ. Optimal model parameters for multi-obective large-eddy simulations. Phys Fluids. 2006;18:095103. doi: 10.1063/1.2353402
  • Meyers J, Sagaut P, Geurts BJ. A computational error assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J Comput Phys. 2007;227(1):156–173. doi: 10.1016/j.jcp.2007.07.012
  • Grinstein FF, Margolin LG, Rider WJ. Implicit large eddy simulation: computing turbulent fluid dynamics. Cambridge: Cambridge University Press; 2007.
  • Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30(1):329–364. doi: 10.1146/annurev.fluid.30.1.329
  • Guo Z, Shu C. The lattice Boltzmann method and its applications in engineering. Singapore: World Scientific; 2013.
  • Kruüger T, Kusumaatmaja H, Kuzmin A. The lattice Boltzmann method. Principles and practice. Berlin: Springer; 2017.
  • Shan X, Yuan X-F, Chen H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J Fluid Mech. 2006;550:413–441. doi: 10.1017/S0022112005008153
  • Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Oxford University Press; 2001.
  • Ansumali S, Karlin IV, Succi S. Kinetic theory of turbulence modeling: smallness parameter, scaling and microscopic derivation of Smagorinsky model. Physica A. 2004;338(3–4):379–394. doi: 10.1016/j.physa.2004.02.013
  • Chen H, Kandasamy S, Orszag S, et al. Extended Boltzmann kinetic equation for turbulent flows. Science. 2003;301(5633):633–636. doi: 10.1126/science.1085048
  • Chen H, Orszag SA, Staroselsky I, et al. Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J Fluid Mech. 2004;519:301–314. doi: 10.1017/S0022112004001211
  • Chen H, Succi S, Orszag S. Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar–Gross–Krook kinetic equation. Phys Rev E. Mar 1999;59(3):R2527–R2530. doi: 10.1103/PhysRevE.59.R2527
  • Chen S. A large-eddy-based lattice Boltzmann model for turbulent flow simulation. Appl Math Comput. 2009;215(2):591–598.
  • Eggels JGM. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int J Heat Fluid Flow. 1996;17(3):307–323. doi: 10.1016/0142-727X(96)00044-6
  • Filippova O, Succi S, Mazzocco F, et al. Multiscale lattice Boltzmann schemes with turbulence modeling. J Comput Phys. 2001;170(2):812–829. doi: 10.1006/jcph.2001.6764
  • Girimaji SS. Boltzmann kinetic equation for filtered fluid turbulence. Phys Rev Lett. 2007;99(3):034501. doi: 10.1103/PhysRevLett.99.034501
  • Hou S, Sterling J, Chen S, et al. A lattice Boltzmann subgrid model for high Reynolds number flows. Fields Inst Comm. 1996;6:151–66.
  • Krafczyk M, Tölke J, Luo L-S. Large-eddy simulations with a multiple-relaxation-time LBE model. Int J Mod Phys B. 2003;17:33–39. doi: 10.1142/S0217979203017059
  • Malaspinas O, Sagaut P. Consistent subgrid scale modelling for lattice Boltzmann methods. J Fluid Mech. JUN 2012;700:514–542. doi: 10.1017/jfm.2012.155
  • Premnath KN, Pattison MJ, Banerjee S. Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method. Physica A. 2009;388(13):2640–2658. doi: 10.1016/j.physa.2009.02.041
  • Teixeira CM. Incorporating turbulence models into the lattice-Boltzmann method. Int J Modern Phys C. 1999;9:1159–1175. doi: 10.1142/S0129183198001060
  • Weickert M, Teike G, Schmidt O, et al. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput Math Appl. 2010;59(7):2200–2214. Mesoscopic Methods in Engineering and Science, International Conferences on Mesoscopic Methods in Engineering and Science. doi: 10.1016/j.camwa.2009.08.060
  • Bösch F, Chikatamarla SS, Karlin IV. Entropic multi-relaxation models for simulation of fluid turbulence. ESAIM: Proc Surveys. 2015;52:1–24. doi: 10.1051/proc/201552001
  • Bösch F, Chikatamarla SS, Karlin IV. Entropic multi-relaxation models for turbulent flows. Phys Rev E. 2015;92:43309. doi: 10.1103/PhysRevE.92.043309
  • Di Ilio G, Dorschner B, Bella G, et al. Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes. J Fluid Mech. 2018;849:35–56. doi: 10.1017/jfm.2018.413
  • Dorschner B, Chikatamarla SS, Karlin IV. Transitional flows with the entropic lattice Boltzmann method. J Fluid Mech. 2017;824:388–412. doi: 10.1017/jfm.2017.356
  • Geier M. De-aliasing and stabilization formalism of the cascaded lattice Boltzmann automaton for under-resolved high Reynolds number flow. Int J Numer Methods Fluids. 2008;56:1249–1254. doi: 10.1002/fld.1634
  • Geier M, Greiner A, Korvink JG. Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys Rev E. 2006;73:066705. doi: 10.1103/PhysRevE.73.066705
  • Geller S, Uphoff S, Krafczyk M. Turbulent jet computations based on MRT and cascaded lattice Boltzmann models. Comput Math Appl. 2013;65:1956–1966. doi: 10.1016/j.camwa.2013.04.013
  • Coreixas C, Wissocq G, Puigt G, et al. Recursive regularization step for high-order lattice Boltzmann methods. Phys Rev E. 2017;96:033306. doi: 10.1103/PhysRevE.96.033306
  • Latt J. Hydrodynamic limit of lattice Boltzmann equations. PhD dissertation, University of Geneva, Geneva, Switzerland, 2007.
  • Latt J, Chopard B. Lattice Boltzmann method with regularized pre-collision distribution functions. Math Comp Sim. 2006;72:165–168. doi: 10.1016/j.matcom.2006.05.017
  • Malaspinas O. Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization. arXiv, pages 1–31, 2015
  • Mattila KK, Philippi PC, HegeleJr LA. High-order regularization in lattice-Boltzmann equations. Phys Fluids. 2017;29(4):046103. doi: 10.1063/1.4981227
  • Montessori A, Falcucci G, Prestininzi P, et al. Regularized lattice Bhatnagar–Gross–Krook model for two- and three-dimensional cavity flow simulations. Phys Rev E. 2014;89:053317. doi: 10.1103/PhysRevE.89.053317
  • Chapman S, Cowling TG. The mathematical theory of nonuniform gases. Cambridge: Cambridge University Press; 1960.
  • Shan X. The mathematical structure of the lattices of the lattice Boltzmann method. J Comput Sci. 2016;17:475–481. doi: 10.1016/j.jocs.2016.03.002
  • Menter FR, Egorov Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul Combust. 2010;85:113–138. doi: 10.1007/s10494-010-9264-5
  • Geurts BJ, Frölich J. A framework for predicting accuracy limitations in large-eddy simulation. Phys Fluids. 2002;14:L41–L44. doi: 10.1063/1.1480830
  • Vreman AW. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys Fluids. 2004;16:3670–3681. doi: 10.1063/1.1785131
  • Silvis MH, Remmerswaal RA, Verstappen R. Physical consistency of subgrid-scale model for large-eddy simulation of incompressible turbulent flows. Phys Fluids. 2017;29:015106. doi: 10.1063/1.4974093
  • Trias FX, Folch D, Gorobets A, et al. Building proper invariants for eddy-viscosity subgrid-scale models. Phys Fluids. 2015;27:065103. doi: 10.1063/1.4921817
  • Poinsot TJ, Lele SK. Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys. 1992;101(1):104–129. doi: 10.1016/0021-9991(92)90046-2
  • Breuer M. Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder. Int J Heat Fluid Flow. 1998;19(5):512–521. doi: 10.1016/S0142-727X(98)10015-2
  • Parnaudeau P, Carlier J, Heitz D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys Fuids. 2008;20(8):085101.
  • Alkishriwi N, Meinke M, Schröder W. A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput Fluids. 2006;35(10):1126–1136. doi: 10.1016/j.compfluid.2005.06.002
  • Ouvrard H, Koobus B, Dervieux A, et al. Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput Fluids. 2010;39(7):1083–1094. doi: 10.1016/j.compfluid.2010.01.017
  • Dong S, Karniadakis GE, Ekmekci A, et al. A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J Fluid Mech. 2006;569:185–207. doi: 10.1017/S0022112006002606
  • Ma X, Karamanos G-S, Karniadakis GE. Dynamics and low-dimensionality of a turbulent near wake. J Fluid Mech. 2000;410:29–65. doi: 10.1017/S0022112099007934
  • Alemi M, Pêgo JP, Maia R. Numerical investigation of the flow behavior around a single cylinder using large Eddy simulation model. Ocean Eng. 2017;145:464–478. doi: 10.1016/j.oceaneng.2017.09.030
  • Mani A, Moin P, Wang M. Computational study of optical distortions by separated shear layers and turbulent wakes. J Fluid Mech. 2009;625:273–298. doi: 10.1017/S0022112008005697
  • Franke J, Frank W. Large eddy simulation of the flow past a circular cylinder at ReD=3900. J Wind Eng Ind Aerodyn. 2002;90(10):1191–1206. 3rd European-African Conference on Wind Engineering. doi: 10.1016/S0167-6105(02)00232-5
  • Kravchenko AG, Moin P. Numerical studies of flow over a circular cylinder at ReD=3900. Phys Fluids. 2000;12(2):403–417. doi: 10.1063/1.870318
  • Lysenko DA, Ertesvåg IS, Rian KE. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul Combust. 2012;89(4):491–518. doi: 10.1007/s10494-012-9405-0
  • Meyer M, Hickel S, Adams NA. Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int J Heat Fluid Flow. 2010;31(3):368–377. Sixth International Symposium on Turbulence and Shear Flow Phenomena. doi: 10.1016/j.ijheatfluidflow.2010.02.026
  • Abrahamsen Prsic M, Ong MC, Pettersen B, et al. Large eddy simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime. Ocean Eng. 2014;77:61–73. doi: 10.1016/j.oceaneng.2013.10.018
  • Wornom S, Ouvrard H, Salvetti MV, et al. Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Comput Fluids. 2011;47(1):44–50. doi: 10.1016/j.compfluid.2011.02.011
  • Zhang H, Yang J-M, Xiao L-F, Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re = 3900. J Hydrodyn Ser B. 2015;27(2):195–203. doi: 10.1016/S1001-6058(15)60472-3
  • D'Alessandro V, Montelpare S, Ricci R. Detached-eddy simulations of the flow over a cylinder at Re = 3900 using OpenFOAM. Comput Fluids. 2016;136:152–169. doi: 10.1016/j.compfluid.2016.05.031
  • Welch P. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. Jun 1967;15(2):70–73. doi: 10.1109/TAU.1967.1161901
  • Borue V, Orszag SA. Forced three-dimensional homogeneous turbulence with hyperviscosity. Europhys Lett. 1995;29:687–692. doi: 10.1209/0295-5075/29/9/006
  • Borue V, Orszag SA. Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity. Phys Rev E. 1995;51:R856–R859. doi: 10.1103/PhysRevE.51.R856
  • Berland J, Lafon P, Daude F, et al. Filter shape dependence and effective scale separation in large-eddy simulations based on relaxation filtering. Comput Fluids. 2011;47:65–74. doi: 10.1016/j.compfluid.2011.02.016
  • Daude F, Berland J, Emmert T, et al. A high-order finite-difference algorithm for direct computation of aerodynamic sound. Comput Fluids. 2012;61:46–63. doi: 10.1016/j.compfluid.2011.08.017
  • Hickel S, Adams NA. On implicit subgrid-scale modeling in wall-bounded flows. Phys Fluids. 2007;19:105106.
  • Hickel S, Adams NA, Domaradzki JA. An adaptive local deconvolution method for implicit LES. J Comput Phys. 2006;213:413–436. doi: 10.1016/j.jcp.2005.08.017
  • Stolz S, Adams NA. An approximate deconvolution procedure for large-eddy simulation. Phys Fluids. 1999;11(7):1699–1701. doi: 10.1063/1.869867
  • Stolz S, Adams NA, Kleiser L. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys Fluids. 2001;13(4):997–1015. doi: 10.1063/1.1350896
  • Stolz S, Adams NA, Kleiser L. The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys Fluids. 2001;13(10):2985–3001. doi: 10.1063/1.1397277
  • Malaspinas O, Chopard B, Latt J. General regularized boundary condition for multi-speed lattice Boltzmann models. Comput Fluids. 2011;49(1):29–35. doi: 10.1016/j.compfluid.2011.04.010
  • Marié S, Gloerfelt X. Adaptive filtering for the lattice Boltzmann method. J Comput Phys. 2017;333:212–226. doi: 10.1016/j.jcp.2016.12.017
  • Ricot D, Marié S, Sagaut P, et al. Lattice Boltzmann method with selective viscosity filter. J Comput Phys. 2009;228(12):4478–4490. doi: 10.1016/j.jcp.2009.03.030
  • Sagaut P. Toward advanced subgrid models for Lattice-Boltzmann-based large-eddy simulation: theoretical formulations. Comput Math Appl. 2010;59(7):2194–2199. Mesoscopic Methods in Engineering and Science, International Conference on Mesoscopic Methods in Engineering and Science. doi: 10.1016/j.camwa.2009.08.051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.