3,248
Views
18
CrossRef citations to date
0
Altmetric
Articles

Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms

ORCID Icon, , &
Pages 32-63 | Received 08 Sep 2018, Accepted 20 Dec 2018, Published online: 11 Jan 2019

References

  • Stull R. An introduction to boundary layer meteorology. Dordrecht: Kluwer Academic Publishers; 1988.
  • Ali N, Hamilton N, Cortina G, et al. Anisotropy stress invariants of thermally stratified wind turbine array boundary layers using large eddy simulations. J Renew Sustain Ener. 2018a;10(1):013301.
  • Ali N, Hamilton N, DeLucia D, et al. Assessing spacing impact on coherent features in a wind turbine array boundary layer. Wind Ener Sci. 2018b;3(1):43–56.
  • Ali N, Aseyev A, Melius M, et al. Evaluation of higher order moments and isotropy in the wake of a wind turbine array. In: Whither turbulence and big data in the 21st century? Springer; 2017a. p. 273–292.
  • Cal RB, Lebrón J, Castillo L, et al. Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J Renew Sustain Ener. 2010;2(1):013106.
  • Calaf M, Meneveau C, Meyers J. Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids. 2010;22(1):015110.
  • Viestenz K, Cal RB. Streamwise evolution of statistical events in a model wind-turbine array. Boundary Layer Meteorol. 2016;158(2):209–227.
  • Cortina G, Cal RB, Calaf M. Distribution of mean kinetic energy around an isolated wind turbine and a characteristic wind turbine of a very large wind farm. Phys Rev Fluids. 2016;074402:1–18.
  • Chamorro L, Porté-Agel F. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study. Boundary Layer Meteorol. 2010;136:515–533.
  • Zhang W, Markfort CD, Porté-Agel F. Wind-turbine wakes in a convective boundary layer: A wind-tunnel study. Boundary Layer Meteorol. 2013;146(2):161–179.
  • Barthelmie RJ, Jensen LE. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Ener. 2010;13:573–586.
  • Xie S, Archer CL. A numerical study of wind-turbine wakes for three atmospheric stability conditions. Boundary Layer Meteorol. 2017;165(1):87–112.
  • Ghaisas NS, Archer CL, Xie S, et al. Evaluation of layout and atmospheric stability effects in wind farms using large-eddy simulation. Wind Ener. 2017;20(7):1227–1240.
  • Abkar M, Porté-Agel F. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Phys. Fluids. 2015;27(3):035104.
  • Abkar M, Porté-Agel F. Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition. Renew Ener. 2014;70:142–152.
  • Chamorro LP, Guala M, Arndt REA, et al. On the evolution of turbulent scales in the wake of a wind turbine model. J Turbul. 2012;13:N27.
  • Wilson J. A second-order closure model for flow through vegetation. Boundary Layer Meteorol. 1988;42(4):371–392.
  • Leclerc MY, Shaw RH, Hartog GD, et al. The influence of atmospheric stability on the budgets of the Reynolds stress and turbulent kinetic energy within and above a deciduous forest. J Appl Meteorol. 1990;29(9):916–933.
  • Morse A, Gardiner B, Marshall B. Mechanisms controlling turbulence development across a forest edge. Boundary Layer Meteorol. 2002;103(2):227–251.
  • Moeng C-H, Wyngaard JC. An analysis of closures for pressure-scalar covariances in the convective boundary layer. J Atmos Sci. 1986;43(21):2499–2513.
  • Andrén A, Moeng C-H. Single-point closures in a neutrally stratified boundary layer. J Atmos Sci. 1993;50(20):3366–3379.
  • Mironov DV. Pressure-potential-temperature covariance in convection with rotation. Q J Roy Meteorol Soc. 2001;127(571):89–110.
  • Miles NL, Wyngaard JC, Otte MJ. Turbulent pressure statistics in the atmospheric boundary layer from large-eddy simulation. Boundary Layer Meteorol. 2004;113(2):161–185.
  • Mironov DV. Turbulence in the lower troposphere: second-order closure and mass–flux modelling frameworks. In: Interdisciplinary aspects of turbulence; 2008. Springer, p. 1–61.
  • Rotta J. Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik. 1951;129(6):547–572.
  • Launder B, Reece GJ, Rodi W. Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech. 1975;68(3):537–566.
  • Lumley JL. Computational modeling of turbulent flows. In: Advances in applied mechanics, vol. 18, Elsevier; 1979. p. 123–176.
  • Ristorcelli J, Lumley JL, Abid R. A rapid-pressure covariance representation consistent with the Taylor-Proudman theorem materially frame indifferent in the two-dimensional limit. J Fluid Mech. 1995;292:111–152.
  • Craft T, Ince N, Launder B. Recent developments in second-moment closure for buoyancy-affected flows. Dyn Atmos Oceans. 1996;23(1–4):99–114.
  • Wilczak J. Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: Velocity and temperature structure. J Atmos Sci. 1984;41(24):3537–3550.
  • Wilczak JM, Bedard Jr AJ. A new turbulence microbarometer and its evaluation using the budget of horizontal heat flux. J Atmos Ocean Technol. 2004;21(8):1170–1181.
  • Naka Y, Stanislas M, Foucaut J, et al. Space–time pressure–velocity correlations in a turbulent boundary layer. J Fluid Mech. 2015;771:624–675.
  • Raupach M, Shaw R. Averaging procedures for flow within vegetation canopies. Boundary Layer Meteorol. 1982;22(1):79–90.
  • Shah S, Bou-Zeid E. Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Boundary Layer Meteorol. 2014;153(3):355–387.
  • VerHulst C, Meneveau C. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms. Phys Fluids. 0000;26. ISSN 10897666.
  • Hamilton N, Tutkun M, Cal RB. Wind turbine boundary layer arrays for Cartesian and staggered configurations: Part II, low-dimensional representations via the proper orthogonal decomposition. Wind Ener. 2015;18(2):297–315.
  • Kadum HF, Knowles D, Cal RB. Quantification of preferential contribution of Reynolds shear stresses and flux of mean kinetic energy via conditional sampling in a wind turbine array. J Fluids Eng. 2019;141(2):021201.
  • Esau I. The Coriolis effect on coherent structures in planetary boundary layers. J Turbul. 2003;5248(03):1–20. ISSN 14685248.
  • Ali N, Cortina G, Hamilton N, et al. Turbulence characteristics of a thermally stratified wind turbine array boundary layer via proper orthogonal decomposition. J Fluid Mech. 2017b;828:175–195.
  • Lu SS, Willmarth WW. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech. 1973;60(3):481–511.
  • Nakagawa H, Nezu I. Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J Fluid Mech. 1977;80(1):99–128.
  • Antonia RA. Conditional sampling in turbulence measurement. Annu Rev Fluid Mech. 1981;13(1):131–156.
  • Bogard DG, Tiederman WG. Burst detection with single-point velocity measurements. J Fluid Mech. 1986;162:389–413.
  • Katul G, Kuhn G, Schieldge J, et al. The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary Layer Meteorol. 1997;83(1):1–26.
  • Barthlott C, Drobinski P, Fesquet C, et al. Long-term study of coherent structures in the atmospheric surface layer. Boundary Layer Meteorol. 2007;125(1):1–24.
  • Mo Z, Liu C. A wind tunnel study of ventilation mechanism over hypothetical urban roughness: The role of intermittent motion scales. Build Environ. 2018;135:94–103.
  • Guan D, Agarwal P, Chiew Y. Quadrant analysis of turbulence in a rectangular cavity with large aspect ratios. J Hydraul Eng. 2018;144(7):04018035.
  • Qi M, Li J, Chen Q, et al. Roughness effects on near-wall turbulence modelling for open-channel flows. J Hydraul Res. 2018:1–14.
  • Roussinova V, Shinneeb A, Balachandar R. Investigation of fluid structures in a smooth open-channel flow using proper orthogonal decomposition. J Hydraul Eng. 2009;136(3):143–154.
  • Viggiano B, Dib T, Ali N, et al. Turbulence, entrainment and low-order description of a transitional variable-density jet. J Fluid Mech. 2018;836:1009–1049.
  • Wu Y, Christensen KT. Outer-layer similarity in the presence of a practical rough-wall topography. Phys Fluids. 2007;19(8):085108.
  • Volino RJ, Schultz MP, Pratt CM. Conditional sampling in a transitional boundary layer under high free-stream turbulence conditions. In: ASME turbo expo 2001: power for land, sea, and air. American Society of Mechanical Engineers; 2001. p. V003T01A066–V003T01A066.
  • Nolan KP, Zaki TA. Conditional sampling of transitional boundary layers in pressure gradients. J Fluid Mech. 2013;728:306–339.
  • Aksamit NO, Pomeroy JW. The effect of coherent structures in the atmospheric surface layer on blowing-snow transport. Boundary Layer Meteorol. 2018;167(2):211–233.
  • Buckley MP, Veron F. The turbulent airflow over wind generated surface waves. Eur J Mech B Fluids.
  • Zhu W, Van Hout R, Katz J. PIV measurements in the atmospheric boundary layer within and above a mature corn canopy. Part II: Quadrant-hole analysis. J Atmos Sci. 2007;64(8):2825–2838.
  • Longo S, Losada MA. Turbulent structure of air flow over wind-induced gravity waves. Exp Fluids. 2012;53(2):369–390.
  • Pokrajac D, Campbell LJ, Nikora V, et al. Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Exp Fluids. 2007;42(3):413–423.
  • Thomas C, Foken T. Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary Layer Meteorol. 2007;123(2):317–337.
  • Finnigan JJ. Turbulent transport in flexible plant canopies. In: The forest-atmosphere interaction. Springer; 1985. p. 443–480.
  • Coppin PA, Raupach MR, Legg BJ. Experiments on scalar dispersion within a model plant canopy part II: An elevated plane source. Boundary Layer Meteorol. 1986;35(1–2):167–191.
  • Hamilton N, Suk Kang H, Meneveau C, et al. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer. J Renew Sustain Ener. 2012;4(6):063105.
  • Bou-Zeid E, Meneveau C, Parlange MB. A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids. 2005;17:1–18.
  • Calaf M, Parlange MB, Meneveau C. Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys Fluids. 2011;23:126603.
  • Sharma V, Calaf M, Lehning M, et al. Time-adaptive wind turbine model for an LES framework. Wind Ener. 2016a;19(5):939–952.
  • Cortina G, Sharma V, Calaf M. Investigation of the incoming wind vector for improved wind turbine yaw-adjustment under different atmospheric and wind farm conditions. Renew Ener. 2017;101:376–386.
  • Cortina G, Calaf M. Turbulence upstream of wind turbines: A large-eddy simulation approach to investigate the use of wind lidars. Renew Ener. 2017;105:354–365. ISSN 0960-1481.
  • Moeng C-H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci. 1984;41(13):2052–2062.
  • Albertson JD, Parlange MB. Natural integration of scalar fluxes from complex terrain. Adv Water Resour. 1999;23(3):239–252.
  • Canuto C, Hussainii M, Quarteroni A. Spectral methods in fluid dynamics. Berlin: Springer-Verlag; 1988.
  • Monin AS, Obukhov AM. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geofiz Inst. English translation by John Miller, 1959. 1954;24(151):163–187.
  • Parlange MB, Brustaert W. Regional shear stress of broken forest from radiosonde wind profiles in the unstable surface layer. Boundary Layer Meteorol. 1993;64(4):355–368.
  • Brutsaert W, Parlange MB. The unstable surface layer above forest: Regional evaporation and heat flux. Water Resour Res. 1992;28(12):3129–3134.
  • Brutsaert W, Parlange MB, Gash J. Neutral humidity profiles in the boundary layer and regional evaporation from sparse pine forest. In: Annales Geophysicae, vol. 7; 1989. p. 623–630.
  • Brutsaert W. Hydrology: an introduction. Cambridge University Press; 2005.
  • Poulos GS, Blumen W, Fritts DC, et al. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc. 2002;83(4):555.
  • Sharma V, Parlange M, Calaf M. Perturbations to the spatial and temporal characteristics of the diurnally-varying atmospheric boundary layer due to an extensive wind farm. Boundary Layer Meteorol. 2016b;1–28.
  • Skåre PE, Krogstad P-Å. A turbulent equilibrium boundary layer near separation. J Fluid Mech. 1994;272:319–348.
  • Krogstad P-Å, Skåre PE. Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys Fluids. 1995;7(8):2014–2024.
  • Marquillie M, Laval J-P, Dolganov R. Direct numerical simulation of a separated channel flow with a smooth profile. J Turbul. 2008;9:N1.
  • Babić K, Rotach MW. Turbulence kinetic energy budget in the stable boundary layer over a heterogeneous surface. Q J Roy Meteorol Soc.
  • Tobin N, Zhu H, Chamorro LP. Spectral behaviour of the turbulence-driven power fluctuations of wind turbines. J Turbul. 2015;16(9):832–846.
  • Liu H, Jin Y, Tobin N, et al. Towards uncovering the structure of power fluctuations of wind farms. Phys Rev E. 2017;96(6):063117.
  • Bossuyt J, Meneveau C, Meyers J. Wind farm power fluctuations and spatial sampling of turbulent boundary layers. J Fluid Mech. 2017;823:329–344.
  • Pope SB. Simple models of turbulent flows. Phys Fluids. 2011;23(1):011301.
  • Meyers TP, Baldocchi DD. The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric For Meteorol. 1991;53(3):207–222.
  • Mironov DV, Sullivan PP. Second-moment budgets and mixing intensity in the stably stratified atmospheric boundary layer over thermally heterogeneous surfaces. J Atmos Sci. 2016;73(1):449–464.
  • Zhou MY, Lenschow DH, Stankov BB, et al. Wave and turbulence structure in a shallow baroclinic convective boundary layer and overlying inversion. J Atmos Sci. 1985;42(1):47–57.
  • Brunton SL, Brunton BW, Proctor JL, et al. Chaos as an intermittently forced linear system. Nat Commun. 2017;8(1):19.
  • Thomsen K, Bindner HW, Pedersen TF. Fatigue loads on a pitch regulated wind turbine operating in a coastal wind turbine array; 1994.
  • Thomsen K, Sørensen P. Fatigue loads for wind turbines operating in wakes. J Wind Eng Indus Aerodyn. 1999;80(1–2):121–136.
  • Sutherland HJ. On the fatigue analysis of wind turbines. Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US), 1999. (Tech. Rep.).
  • Manwell JF, McGowan JG, Rogers AL. Wind energy explained: theory, design and application. John Wiley & Sons; 2010.
  • Ali N, Aseyev AS, Cal RB. Structure functions, scaling exponents and intermittency in the wake of a wind turbine array. J Renew Sustain Ener. 2016a;8(1):013304.
  • Viggiano B, Gion MS, Ali N, et al. Inverse structure functions in the canonical wind turbine array boundary layer. J Renew Sustain Ener. 2016;8(5):053310.
  • Ali N, Kadum HF, Cal RB. Focused-based multifractal analysis of the wake in a wind turbine array utilizing proper orthogonal decomposition. J Renew Sustain Ener. 2016b;8(6):063306.
  • Milan P, Wächter M, Peinke J. Turbulent character of wind energy. Phys Rev Lett. 2013;110(13):138701.
  • Calif R, Schmitt FG. Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Process Geophys. 2014;21(2):379–392.
  • Parisi G, Ghil M. Turbulence and predictability in geophysical fluid dynamics and climate dynamics. In: Proceedings of the International School of Physic Enrico Fermi. Course LXXXVIII, Varenna on Lake Como, Villa Monastero, 14–24 June, 1983, North-Holland; 1985.
  • Keylock CJ, Chang KS, Constantinescu GS. Large eddy simulation of the velocity-intermittency structure for flow over a field of symmetric dunes. J Fluid Mech. 2016a;805:656–685.
  • Kolwankar KM, Lévy-Véhel J. A time domain characterization of the fine local regularity of functions. J Fourier Anal Appl. 2002;8(4):319–334.
  • Jaffard S. Multifractal formalism for functions part I: Results valid for all functions. SIAM J Math Anal. 1997;28(4):944–970.
  • Seuret S, Lévy-Véhel J. A time domain characterization of 2-microlocal spaces. J Fourier Anal Appl. 2003;9(5):473–495.
  • Tricot C. Curves and fractal dimension. Springer Science & Business Media; 1994.
  • Trujillo L, Legrand P, Lévy-Véhel J. The estimation of hölderian regularity using genetic programming. In: Proceedings of the 12th annual conference on genetic and evolutionary computation. ACM; 2010. p. 861–868.
  • Keylock CJ. Characterizing the structure of nonlinear systems using gradual wavelet reconstruction. Nonlinear Process Geophys. 2010;17(6):615.
  • Keylock CJ. A criterion for delimiting active periods within turbulent flows. Geophys Res Lett. 0000;35(11).
  • Keylock CJ, Nishimura K, Peinke J. A classification scheme for turbulence based on the velocity-intermittency structure with an application to near-wall flow and with implications for bed load transport. J Geophys Res Earth Surf. 0000;117(F1): 0–0.
  • Keylock CJ, Singh A, Venditti JG, et al. Robust classification for the joint velocity-intermittency structure of turbulent flow over fixed and mobile bedforms. Earth Surf Process Landf. 2014;39(13):1717–1728.
  • Keylock CJ, Ganapathasubramani B, Monty J, et al. The coupling between inner and outer scales in a zero pressure boundary layer evaluated using a Hölder exponent framework. Fluid Dyn Res. 2016b;48(2):021405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.