430
Views
5
CrossRef citations to date
0
Altmetric
Articles

Consistently formulated eddy-viscosity coefficient for k-equation model

, , , &
Pages 959-994 | Received 17 Jan 2018, Accepted 04 Dec 2018, Published online: 04 Feb 2019

References

  • Norris LG, Reynolds WC. Turbulent channel flow with moving wavy boundary. USA: Stanford University, Department of Mechanical Engineering; 1975. (Report No. FM-10).
  • Rahman MM, Lampinen MJ, Siikonen T. An improved k-equation turbulence model. Journal of Energy and Power Engineering. 2014;8:1895–1907.
  • Rahman MM, Agarwal RK, Siikonen T. A modified one-equation turbulence model based on turbulent kinetic energy equation. In: 54th AIAA Aerospace Sciences Meeting, 2016. p. 1598.
  • Xu J, Zhang Y, Bai J. One-equation turbulence model based on extended Bradshaw assumption. AIAA J. 2015;53(6):735–747. doi: 10.2514/1.J053039
  • Wilcox DC. Turbulence modeling for CFD. 2nd ed. La Canada, California: DCW Industries; 1998.
  • Baldwin BS, Barth TJ. A one-equation turbulence transport model for high-Reynolds number wall-bounded flows. In: NASA TM-102847, 1990.
  • Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic flows. AIAA Paper No. 92-0439, 1992.
  • Menter FR. Eddy viscosity transport equations and their relation to the k–ε model. ASME J Fluids Eng. 1997;119:876–884. doi: 10.1115/1.2819511
  • Elkhoury M. Assessment and modification of one-equation models of turbulence for wall-bounded flows. ASME J Fluids Eng. 2007;129:921–928. doi: 10.1115/1.2743666
  • Fares E, Schröder W. A general one-equation turbulence model for free shear and wall-bounded flows. Flow Turbulence Combustion. 2000;73:187–215. doi: 10.1007/s10494-005-8625-y
  • Nagano Y, Pei CQ, Hattori H. A new low-Reynolds-number one-equation model of turbulence. Flow Turbulence Combustion. 1999;63:135–151. doi: 10.1023/A:1009924002401
  • Rahman MM, Siikonen T, Agarwal RK. Improved low Re-number one-equation turbulence model. AIAA J. 2011;49:735–747. doi: 10.2514/1.J050651
  • Rahman MM, Wallin S, Siikonen T. Exploring k and ε with R-equation model using elliptic relaxation function. Flow Turbulence Combustion. 2012;89:121–148. doi: 10.1007/s10494-012-9390-3
  • Rahman MM, Agarwal RK, Siikonen T. RAS one-equation turbulence model with non-singular eddy-viscosity coefficient. Int J Comput Fluid Dyn. 2016;30(2):89–106. doi: 10.1080/10618562.2016.1164847
  • Bradshaw P, Ferriss DH, Atwell NP. Calculation of boundary layer development using the turbulent energy equations. J Fluid Mech. 1967;23:31–64.
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32(8):1598–1605. doi: 10.2514/3.12149
  • Rodi W. A new algebraic relation for calculating the Reynolds stresses. Z Angew Math Mech. 1976;56:T219–221. doi: 10.1002/zamm.19760560510
  • Abid R, Morrison JH, Gatski TB, et al. Prediction of aerodynamic flows with a new explicit algebraic stress model. AIAA J. 1997;34:2632–2635. doi: 10.2514/3.13451
  • Gatski TB, Speziale CG. On the explicit algebraic stress models for complex turbulent models. J Fluid Mech. 1993;254:59–78. doi: 10.1017/S0022112093002034
  • Speziale CG, Sarkar S, Gatski TB. Modelling the pressure-stain correlation of turbulence: an invariant dynamical system. J Fluid Mech. 1991;227:245–272. doi: 10.1017/S0022112091000101
  • Girimaji SS. Fully explicit and self-consistent algebraic Reynolds stress model. Theor Comput Fluid Dyn. 1996;8:387–402. doi: 10.1007/BF00455991
  • Jogen J, Gatski TB. A new approach to characterizing the equilibrium states of the Reynolds stress anisotropy in homogeneous turbulence. Theor Comput Fluid Dyn. 1998;11:31–47. doi: 10.1007/s001620050079
  • Rahman MM, Siikonen T. An eddy viscosity model with near-wall modifications. Int J Numer Methods Fluids. 2005;49:975–997. doi: 10.1002/fld.1034
  • Rahman MM, Siikonen T. Modifications for an explicit algebraic stress model. Int J Numer Methods Fluids. 2001;35(2):221–245. doi: 10.1002/1097-0363(20010130)35:2<221::AID-FLD93>3.0.CO;2-N
  • Andreas EL, Claffery KJ, Jordan RE, et al. Evaluations of the von Karman constant in the atmospheric surface layer. J Fluid Mech. 2006;559:117–149. doi: 10.1017/S0022112006000164
  • Mansour NN, Kim J, Moin P. Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J Fluid Mech. 1988;194:15–44. doi: 10.1017/S0022112088002885
  • She ZS, Chen X, Wu Y, et al. New perspective in statistical modeling of wall-bounded turbulence. Acta Mech Sin. 2010;26(6):847–861. doi: 10.1007/s10409-010-0391-y
  • Revell AJ, Craft TJ, Laurence DR. Turbulence modelling of unsteady turbulent flows using the stress strain lag model. Flow Turbulence Combustion. 2011;86:129–151. doi: 10.1007/s10494-010-9297-9
  • Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech. 1987;177:133–166. doi: 10.1017/S0022112087000892
  • Lee MJ, Kim J, Moin P. Structure of turbulence at high shear rate. J Fluid Mech. 1990;216:561–583. doi: 10.1017/S0022112090000532
  • Rogers MM, Moin P. The structure of the vorticity field in homogeneous turbulent flows. J Fluid Mech. 1987;176:33–66. doi: 10.1017/S0022112087000569
  • Kim J. “Personal communication”. 1990
  • Tavoularis S, Corrsin A. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part I. J Fluid Mech. 1981;104:311–347. doi: 10.1017/S0022112081002930
  • Rahman MM, Rautaheimo P, Siikonen T. Numerical study of turbulent heat transfer from a confined impinging jet using a pseudo-compressibility method. In Second International Symposium on Turbulence, Heat and Mass transfer, K. Hanjalic K, Peeters TWJ, editors. Delft, the Netherlands: Delft University Press; pp. 511–520, 1997.
  • Rahman MM, Siikonen T. An artificial compressibility method for incompressible flows. Numerical Heat Transfer B. 2001;40:391–409. doi: 10.1080/104077901753243188
  • Rahman MM, Siikonen T. An artificial compressibility method for viscous incompressible and low Mach number flows. Int J Numer Methods Eng. 2008;75:1320–1340. doi: 10.1002/nme.2302
  • Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys. 1981;43(2):357–372. doi: 10.1016/0021-9991(81)90128-5
  • Lombard C, Bardina J, Venkatapathy E, et al. Multi-dimensional formulation of CSCM – an upwind flux difference eigenvector split method for the compressible Navier–Stokes equations. In 6th AIAA Computational Fluid Dynamics Conference , AIAA Paper 83-1895-CP, pp. 649–664, 1983.
  • Jameson A, Yoon S. Multigrid solution of the Euler equations using implicit schemes. AIAA J. 1986;24(11):1737–1743. doi: 10.2514/3.9518
  • Driver DM, Seegmiller HL. Features of a reattaching turbulent shear layer in divergent channel flow. AIAA J. 1985;23(2):163–171. doi: 10.2514/3.8890
  • So RMC, Lai YG, Yoo GJ. Low-Reynolds number modeling of flows over a backward facing step. J Appl Math Phys. 1988;39:13–27.
  • Buice C, Eaton JK. Experimental investigation of flow through an asymmetric plane diffuser. Department of Mechanical Engineering, Thermoscience Division, California, CA: Stanford University; 1997 (Rept. TSD-107).
  • Simpson RL, Long CH, Byun G. Study of vortical separation from an axisymmetric hill. Int J Heat Fluid Flow. 2002;23:582–591. doi: 10.1016/S0142-727X(02)00154-6
  • Coles D, Wadcock AJ. Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift. AIAA J. 1979;17(4):321–329. doi: 10.2514/3.61127
  • Turbulence Modeling Resource. Turbulence Modeling Resource [online database] NASA Langley Research Center, Hampton, VA, http://turbmodels.larc.nasa.gov/.
  • Schmitt V, Charpin F. Pressure distributions on the ONERA M6-Wing at Transonic Mach Number. In AGARD-AR-138, B1-1-B1-44, May 1979.
  • Bradbury JS. The structure of a self-preserving turbulent plane jet. J Fluid Mech. 1965;23(1):31–64. doi: 10.1017/S0022112065001222
  • Heskestad G. Hot-wire measurements in a plane turbulent jet. J Appl Mech. 1965;32(4):721–734. doi: 10.1115/1.3627309
  • Rodi W. A new method for analyzing hot-wire signals in highly turbulent flows and its evaluation on round jets. Disa Inf. 1975;17:9–18.
  • Wygnansk I, Fiedler HE. Some measurements in self-preserving jet. J Fluid Mech. 1969;38(3):577–612. doi: 10.1017/S0022112069000358
  • Pope SB. An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 1978;16(3):279–281. doi: 10.2514/3.7521

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.