1,233
Views
14
CrossRef citations to date
0
Altmetric
Articles

The VERTEX field campaign: observations of near-ground effects of wind turbine wakes

ORCID Icon, , , , , , & show all
Pages 64-92 | Received 25 Sep 2018, Accepted 14 Dec 2018, Published online: 29 Jan 2019

References

  • Archer CL, Jacobson MZ. Evaluation of global wind power. J Geophys Res. 2005;110:D12110.
  • Jacobson MZ, Archer CL. Saturation wind power potential and its implications for wind energy. Proc Natl Acad Sci. 2012 Sep;109(39):15679–15684.
  • Energy Information Administration. Annual energy outlook 2017; 2017.
  • Global Wind Energy Council. Global wind report 2016 – Annual market update; 2016.
  • Baidya Roy S, Pacala SW, Walko RL. Can large wind farms affect local meteorology? J Geophys Res. 2004;109:D19101.
  • Baidya Roy S, Traiteur JJ. Impacts of wind farms on surface air temperatures. Proc Natl Acad Sci. 2010 Oct;107(42):17899–17904.
  • Adams AS, Keith DW. Are global wind power resource estimates overstated? Environ Res Lett. 2013 Feb;8(1):015021.
  • Miller LM, Gans F, Kleidon A. Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dyn. 2011;2(1):1–12.
  • Armstrong A, Burton RB, Lee SE. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ Res Lett. 2016;11(4):044024.
  • Walsh-Thomas JM, Cervone G, Agouris P, et al. Further evidence of impacts of large-scale wind farms on land surface temperature. Renew Sustain Energ Rev. 2012 Oct;16(8):6432–6437.
  • Rajewski DA, Takle ES, Lundquist JK, et al. CropWind Energy eXperiment (CWEX): observations of surface-layer, boundary-layer, and mesoscale interactions with a wind farm. Bull Am Meteorol Soc. 2013 May;94(5):655–672.
  • Rajewski DA, Takle ES, Lundquist JK, et al. Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm. Agric For Meteorol. 2014;194:175–187.
  • Zhou L, Tian Y, Roy SB, et al. Impacts of wind farms on land surface temperature. Nat Clim Chang. 2012 Apr;2(6):1–5.
  • Harris RA, Zhou L, Xia G. Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sens (Basel). 2014;6(12):12234–12246.
  • Keith DW, DeCarolis JF, Denkenberger DC, et al. The influence of large-scale wind power on global climate. Proc Natl Acad Sci. 2004 Nov;101(46):16115–16120.
  • Kirk-Davidoff DB, Keith DW. On the climate impact of surface roughness anomalies. J Atmospheric Sci. 2008 Aug;65:2215–2234.
  • Wang C, Prinn RG. Potential climatic impacts and reliability of very large-scale wind farms. Atmospheric Chem Phys. 2010;10(4):2053–2061.
  • Wang C, Prinn RG. Potential climatic impacts and reliability of large-scale offshore wind farms. Environ Res Lett. 2011 Jun;6:1–7.
  • Fitch AC, Olson JB, Lundquist JK. Parameterization of wind farms in climate models. J Clim. 2013;26(17):6439–6458.
  • Marvel K, Kravitz B, Caldeira K. Geophysical limits to global wind power. Nat Clim Change. 2012 Sep;2(9):1–4.
  • Fitch AC, Olson JB, Lundquist JK, et al. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon Weather Rev. 2012 Sep;140:3017–3038.
  • Fitch AC, Lundquist JK, Olson JB. Mesoscale influences of wind farms throughout a diurnal cycle. Mon Weather Rev. 2013 Jul;141(7):2173–2198.
  • Cervarich MC, Roy SB, Zhou L. Spatiotemporal structure of wind farm-atmospheric boundary layer interactions. Energy Procedia. 2013;40:530–536.
  • Abkar M, Porté-Agel F. A new wind-farm parameterization for large-scale atmospheric models. J Renew Sustain Energy. 2015;7(1):044024.
  • Pope SB. Turbulent flows. Cambridge (UK): Cambridge University Press; 2000.
  • Lu H, Porté-Agel F. Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids. 2011;23(6):065101.
  • Lu H, Porté-Agel F. On the impact of wind farms on a convective atmospheric boundary layer. Boundary Layer Meteorol. 2015;157:81–96.
  • Calaf M, Meneveau C, Meyers J. Large Eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids. 2010;22(1):015110.
  • Calaf M, Parlange MB, Meneveau C. Large Eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys Fluids. 2011;23(12):126603.
  • Chamorro LP, Porté-Agel F. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study. Boundary Layer Meteorol. 2010;136:515–533.
  • Wu YT, Porté-Agel F. Large-Eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary Layer Meteorol. 2011;138:345–366.
  • Zhang W, Markfort CD, Porté-Agel F. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Exp Fluids. 2012;52:1219–1235.
  • Xie S, Archer CL. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy. 2015;18(10):1815–1838.
  • Tian W., Ozbay A., Wang X. D., et al. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds. Acta Mech Sin. 2017;33:742–753.
  • Käsler Y, Rahm S, Simmet R. Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J Atmospheric Ocean Technol. 2010;27:1529–1532.
  • Iungo GV, Porté-Agel F. Measurement procedures for characterization of wind turbine wakes with scanning Doppler wind LiDARs. Adv Sci Res. 2013 May;10(1):71–75.
  • Iungo GV, Viola F, Camarri S, et al. Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. J Fluid Mech. 2013;737:499–526.
  • Iungo GV, Wu YT, Porté-Agel F. Field measurements of wind turbine wakes with lidars. J Atmospheric Ocean Technol. 2013;30:274–287.
  • Iungo GV, Porté-Agel F. Volumetric lidar scanning of wind turbine wakes under convective and neutral atmospheric stability regimes. J Atmospheric Ocean Technol. 2014 Oct;31(10):2035–2048.
  • Banta RM, Pichugina YL, Brewer WA, et al. 3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar. J Atmospheric Ocean Technol. 2015;32(5):904–914.
  • Katic I, Højstrup J, Jensen NO. A simple model for cluster efficiency. In: European wind energy association conference and exhibition; 1986. p. 407–410.
  • Cleve J, Greiner M, Enevoldsen P, et al. Model-based analysis of wake-flow data in the Nysted offshore wind farm. Wind Energy. 2009;12:125–135.
  • Zhang MH. Wind resource assessment and micrositing: Science and engineering. Singapore: Wiley; 2015.
  • Archer CL, Vasel-Be-Hagh A, Yan C, et al. Review and evaluation of wake loss models for wind energy applications. Appl Energy. 2018;226:1187–1207.
  • Hansen MO, Pedersen BM. Influence of the meteorology mast on a cup anemometer. J Sol Energy Eng. 1999;121(2):128–131.
  • Collier CG, Davies F, Bozier KE, et al. Dual-Doppler lidar measurements for improving dispersion models. Bull Am Meteorol Soc. 2005;86(6):825–838.
  • Newsom RK, Ligon D, Calhoun R. Retrieval of microscale wind and temperature fields from single-and dual-Doppler lidar data. J Appl Meteorol. 2005;44:1324–1345.
  • Lothon M, Lenschow DH, Mayor SD. Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Boundary Layer Meteorol. 2006;121:521–536.
  • Newsom R, Calhoun R, Ligon D, et al. Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Boundary Layer Meteorol. 2008;127(1):111–130.
  • Pichugina YL, Banta RM, Kelley ND. Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: sensitivity to averaging procedures. J Atmospheric Ocean Technol. 2008;25:1307–1327.
  • Lundquist JK, Wilczak JM, Ashton R, et al. Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: the XPIA field campaign. Bull Am Meteorol Soc. 2017 Feb;98(2):289–314.
  • Banta RM, Pichugina YL, Kelley ND, et al. Wind energy meteorology: insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull Am Meteorol Soc. 2013 Jun;94(6):883–902.
  • Rhodes ME, Lundquist JK. The effect of wind-turbine wakes on summertime US Midwest atmospheric wind profiles as observed with ground-based doppler lidar. Boundary Layer Meteorol. 2013;149:85–103.
  • Smalikho IN, Banakh VA, Pichugina YL, et al. Lidar investigation of atmosphere effect on a wind turbine wake. J Atmospheric Ocean Technol. 2013 Nov;30(11):2554–2570.
  • Aitken ML, Banta RM, Pichugina YL, et al. Quantifying wind turbine wake characteristics from scanning remote sensor data. J Atmospheric Ocean Technol. 2014;31(4):765–787.
  • Vollmer L, van Dooren M, Trabucchi D, et al. First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurements in a German offshore wind farm. J Phys Conf Ser. 2015;625(1):012001.
  • Banakh VA, Smalikho IN. Estimation of turbulent energy dissipation rate from data of pulse Doppler lidar. Atmospheric Ocean Opt. 1997;10:957–965.
  • Smalikho IN. Accuracy of turbulent energy dissipation rate estimation from wind velocity temporal spectrum. Atmospheric Ocean Opt. 1997;10:898–904.
  • Frehlich RG, Hannon S, Henderson S. Coherent Doppler lidar measurements of wind field statistics. Boundary Layer Meteorol. 1998;86:233–256.
  • Frehlich R, Meillier Y, Jensen ML, et al. Measurements of boundary layer profiles in an urban environment. J Appl Meteorol Climatol. 2006 Jun;45(6):821–837.
  • Davies F, Collier C, Pearson G, et al. Doppler lidar measurements of turbulent structure function over an urban area. J Atmospheric Ocean Technol. 2004;21:753–761.
  • Krishnamurthy R., Calhoun R., Fernando H. Large-eddy simulation-based retrieval of dissipation from coherent Doppler lidar data. Boundary Layer Meteorol. 2010;136:45–57.
  • Mann J, Peña A, Bingöl F, et al. Lidar scanning of momentum flux in and above the atmospheric surface layer. J Atmospheric Ocean Technol. 2010;27(6):959–976.
  • Choukulkar A, Brewer WA, Sandberg SP, et al. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. Atmos Meas Tech. 2017;10:247–264.
  • Rothermel J, Kissinger C, Davis D. Dual-Doppler lidar measurement of winds in the JAWS experiment. J Atmospheric Ocean Technol. 1985;2:138–147.
  • Xia Q, Lin CL, Calhoun R. Retrieval of urban boundary layer structures from Doppler lidar data. Part I: Accuracy assessment. J Atmospheric Sci. 2008;65:3–20.
  • Kongara S, Calhoun R, Choukulkar A, et al. Velocity retrieval for coherent Doppler lidar. Int J Remote Sens. 2012;33:3596–3613.
  • Berg J, Vasiljevíc N, Kelly M, et al. Addressing spatial variability of surface-layer wind with long-range WindScanners. J Atmospheric Ocean Technol. 2015;32(3):518–527.
  • Debnath M, Iungo GV, Ashton R, et al. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans. Atmos Meas Tech. 2017;10:431–444.
  • Solheim F, Godwin JR, Ware R. Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer. Meteorol Z. 1998;7:370–376.
  • Solheim F, Godwin JR, Westwater ER, et al. Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci. 1998;33:393–404.
  • Rosenkranz PW. Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci. 1998;33:919–928.
  • Han Y, Westwater ER. Analysis and improvement of tipping calibration for ground-based microwave radiometers. IEEE Trans Geosci Remote Sens. 2000 May;38(3):1260–1276.
  • Wilczak JM, Oncley SP, Stage SA. Sonic anemometer tilt correction algorithms. Boundary Layer Meteorol. 2001;99:127–150.
  • Schotanus P, Nieuwstadt FTM, DeBruin H. Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary Layer Meteorol. 1983;26:81–93.
  • Kaimal J, Gaynor J. Another look at sonic thermometry. Boundary Layer Meteorol. 1991;56:401–410.
  • Webb E, Pearman G, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer. Q J Royal Meteorol Soc. 1980;106:85–100.
  • Wyngaard J. Flow-distortion effects on scalar flux measurements in the surface layer: implications for sensor design. Boundary Layer Meteorol. 1988;42:19–26.
  • Lee X, Black T. Relating eddy correlation sensible heat flux to horizontal sensor separation in the unstable atmospheric surface layer. J Geophys Res. 1994;99(D9):18545–18553.
  • Horst T. A simple formula for attenuation of eddy fluxes measured with first-order response scalar sensors. Boundary Layer Meteorol. 1997;82:219–233.
  • Kristensen L, Mann J, Oncley SP, et al. How close is close enough when measuring scalar fluxes with displaced sensors? J Atmospheric Ocean Technol. 1997;14:814–821.
  • van Dijk A, Kohsiek W, DeBruin H. Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atmospheric Ocean Technol. 2003;20:143–151.
  • Horst T, Lenschow D. Attenuation of scalar fluxes measured with spatially-displaced sensors. Boundary Layer Meteorol. 2009;130:275–300.
  • Oncley SP, Friehe CA, Larue JC, et al. Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmospheric Sci. 1996;53(7):1029–1044.
  • Trevino G, Andreas EL. Averaging intervals for spectral analysis of nonstationary turbulence. Boundary Layer Meteorol. 2000;95(2):231–247.
  • Vickers D, Mahrt L. The cospectral gap and turbulent flux calculations. J Atmospheric Ocean Technol. 2003;20(5):660–672.
  • Wang H, Barthelmie RJ. Wind turbine wake detection with a single Doppler wind lidar. J Phys Conf Ser. 2015;625(1):012017.
  • Archer CL, Colle BA, Delle Monache L, et al. Meteorology for coastal/offshore wind energy in the United States: recommendations and research needs for the next 10 years. Bull Am Meteorol Soc. 2014;95(4):515–519.
  • Bingöl F, Larsen GC, Mann J. Wake meandering - an analysis of instantaneous 2D laser measurements. J Phys Conf Ser. 2007;75(1):012059.
  • Larsen GC, Aagaard Madsen H, Bingöl F, et al. Dynamic wake meandering modeling. Risø National Laboratory, Technical University of Denmark; 2007. R-1607(EN).
  • Larsen GC, Madsen HA, Thomsen K, et al. Wake meandering: a pragmatic approach. Wind Energy. 2008;11(4):377–395.
  • Howard KB, Singh A, Sotiropoulos F. On the statistics of wind turbine wake meandering: an experimental investigation. Phys Fluids. 2015;27(7):075103.
  • Keck RE, De Maré M, Churchfield MJ, et al. On atmospheric stability in the dynamic wake meandering model. Wind Energy. 2014;17(11):1689–1710.
  • Magnusson M, Smedman AS. Influence of atmospheric stability on wind turbine wakes. Wind Eng. 1994;18(3):139–152.
  • Vollmer L, Steinfeld G, Heinemann D, et al. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study. Wind Energy Sci. 2016;1(2):129–141.
  • Brook RR. The influence of water vapor fluctuations on turbulent fluxes. Boundary Layer Meteorol. 1978;15:481–487.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.