258
Views
5
CrossRef citations to date
0
Altmetric
Articles

On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis

Pages 174-193 | Received 12 May 2018, Accepted 02 Mar 2019, Published online: 20 Mar 2019

References

  • Marusic I, McKeon BJ, Monkewitz PA, et al. Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids. 2010;22(6):065103/1–065103/24. doi: 10.1063/1.3453711
  • Smits AJ, McKeon BJ, Marusic I. High-Reynolds number wall turbulence. Annu Rev Fluid Mech. 2011;43(1):353–375. doi: 10.1146/annurev-fluid-122109-160753
  • Jiménez J. Near-wall turbulence. Phys Fluids. 2013;25(10):101302/1–101302/28. doi: 10.1063/1.4824988
  • Wallace JM. Highlights from 50 years of turbulent boundary layer research. J Turbulence. 2013;13(53):1–70.
  • Pullin DI, Inoue M, Saito N. On the asymptotic state of high Reynolds number, smooth-wall turbulent flows. Phys Fluids. 2013;25(1):015116/1–015116/9. doi: 10.1063/1.4774335
  • Hultmark M, Vallikivi M, Bailey SCC, et al. Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett. 2012;108:094501/1–094501/5. doi: 10.1103/PhysRevLett.108.094501
  • Kalitzin G, Medic G, Templeton JA. Wall modeling for LES of high Reynolds number channel flows: what turbulence information is retained?. Comput Fluids. 2008;37:809–815. doi: 10.1016/j.compfluid.2007.02.016
  • Pantano C, Pullin DI, Dimotakis PE, et al. LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow. J Comput Phys. 2008;227:9271–9291. doi: 10.1016/j.jcp.2008.04.015
  • Chung D, Pullin DI. Large-eddy simulation and wall modelling of turbulent channel flow. J Fluid Mech. 2009;631:281–309. doi: 10.1017/S0022112009006867
  • Chung D, McKeon BJ. Large-eddy simulation of large-scale structures in long channel flow. J Fluid Mech. 2010;661:341–364. doi: 10.1017/S0022112010002995
  • Chen S, Xia Z, Pei S, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J Fluid Mech. 2012;703:1–28. doi: 10.1017/jfm.2012.150
  • Yang XIA, Sadique J, Mittal R, et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys Fluids. 2015;27(2):025112/1–025112/32.
  • Heinz S. Statistical mechanics of turbulent flows. Berlin: Springer-Verlag; 2003.
  • Heinz S. Unified turbulence models for LES and RANS, FDF and PDF simulations. Theoret Comput Fluid Dynam. 2007;21(2):99–118. doi: 10.1007/s00162-006-0036-8
  • Heinz S. Realizability of dynamic subgrid-scale stress models via stochastic analysis. Monte Carlo Methods Applic. 2008;14(4):311–329. doi: 10.1515/MCMA.2008.014
  • Heinz S, Gopalan H. Realizable versus non-realizable dynamic subgrid-scale stress models. Phys Fluids. 2012;24(11):115105/1–115105/23. doi: 10.1063/1.4767538
  • Gopalan H, Heinz S, Stöllinger M. A unified RANS-LES model: computational development, accuracy and cost. J Comput Phys. 2013;249:249–279. doi: 10.1016/j.jcp.2013.03.066
  • Mokhtarpoor R, Heinz S, Stoellinger M. Dynamic unified RANS-LES simulations of high Reynolds number separated flows. Phys Fluids. 2016;28(9):095101/1–095101/36. doi: 10.1063/1.4961254
  • Mokhtarpoor R, Heinz S. Dynamic large eddy simulation: stability via realizability. Phys Fluids. 2017;29(10):105104/1–105104/22. doi: 10.1063/1.4986890
  • Heinz S. The large eddy simulation capability of Reynolds-averaged Navier-Stokes equations: analytical results. Phys Fluids. 2019;31(2):021702/1–021702/6. doi: 10.1063/1.5085435
  • Buschmann MH, Gad el Hak M.. Turbulent boundary layers: is the wall falling or merely wobbling?. Acta Mech. 2011;218(3-4):309–318. doi: 10.1007/s00707-010-0429-z
  • Morrison JF. The interaction between inner and outer regions of turbulent wall-bounded flow. Phil Trans R Soc A. 2007;365(1852):683–698. doi: 10.1098/rsta.2006.1947
  • Priyadarshana PJA, Klewicki JC. Study of the motions contributing to the Reynolds stress in high and low Reynolds number turbulent boundary layers. Phys Fluids. 2004;16(12):4586–4600. doi: 10.1063/1.1809131
  • Klewicki JC. Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. J Fluids Eng. 2010;32(9):094001/1–094001/48.
  • Heinz S. On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis. J Turbul. 2018;19(11-12):929–958. doi: 10.1080/14685248.2019.1566736
  • Lee M, Moser RD. Direct numerical simulation of turbulent channel flow up to Reτ=5200. J Fluid Mech. 2015;774:395–415. doi: 10.1017/jfm.2015.268
  • Available from: http://turbulence.ices.utexas.edu, 2016.
  • Chin C, Monty JP, Ooi A. Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Int J Heat Fluid Flow. 2014;45:33–40. doi: 10.1016/j.ijheatfluidflow.2013.11.007
  • Sillero JA, Jiménez J, Moser RD. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+≈2000. Phys Fluids. 2013;25(10):105102/1–105102/16. doi: 10.1063/1.4823831
  • Available from: http://torroja.dmt.upm.es/turbdata/blayers, 2016.
  • Schultz MP, Flack KA. Reynolds-number scaling of turbulent channel flow. Phys Fluids. 2013;25(2):025104/1–025104/13. doi: 10.1063/1.4791606
  • Hultmark M, Vallikivi M, Bailey SCC, et al. Logarithmic scaling of turbulence in smooth-and rough-wall pipe flow. J Fluid Mech. 2013;728:376–395. doi: 10.1017/jfm.2013.255
  • Available from: https://smits.princeton.edu/superpipe-turbulence-data, 2016.
  • Vallikivi M, Hultmark M, Smits AJ. Turbulent boundary layer statistics at very high Reynolds number. J Fluid Mech. 2015;779:371–389. doi: 10.1017/jfm.2015.273
  • Lozano-Durán A, Jiménez J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ=4200. Phys Fluids. 2014;26(1):011702/1–011702/8. doi: 10.1063/1.4862918
  • Available from: http://torroja.dmt.upm.es/channels/data, 2016.
  • Ahn J, Lee JH, Lee J, et al. Direct numerical simulation of a 30R long turbulent pipe flow at Reτ=3008. Phys Fluids. 2015;27(6):065110/1–065110/14. doi: 10.1063/1.4922612
  • Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech. 2010;659:116–126. doi: 10.1017/S0022112010003113
  • Available from: http://www.mech.kth.se/pschlatt/data/readme.html, 2016.
  • Townsend AA. The structure of turbulent shear flow. 1st ed. Cambridge: Cambridge University Press; 1956.
  • Townsend AA. Equilibrium layers and wall turbulence. J Fluid Mech. 1961;11:97–120. doi: 10.1017/S0022112061000883
  • Townsend AA. The structure of turbulent shear flow. 2nd ed. Cambridge: Cambridge University Press; 1976.
  • McNaughton KG, Brunet Y. Townsend's hypothesis, coherent structures and Monin-Obukhov similarity. Bound-Layer Meteorol. 2002;102(2):161–175. doi: 10.1023/A:1013171312407
  • Yamamoto Y, Tsuji Y. Numerical evidence of logarithmic regions in channel flow at Reτ=8000. Phys Rev Fluids. 2018;3(1):012602/1–012602/10. doi: 10.1103/PhysRevFluids.3.012602
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Kim J. Progress in pipe and channel flow turbulence, 1961–2011. J Turbul. 2012;13(45):1–19.
  • Marusic I, Monty JP, Hultmark M, et al. On the logarithmic region in wall turbulence. J Fluid Mech. 2013;716:R3/1–R3/11. doi: 10.1017/jfm.2012.511
  • Abe H, Antonia RA. Relationship between the energy dissipation function and the skin friction law in a turbulent channel flow. J Fluid Mech. 2016;798:140–164. doi: 10.1017/jfm.2016.299
  • Krogstad P-Å, Antonia RA. Surface roughness effects in turbulent boundary layers. Exp Fluids. 1999;27(5):450–460. doi: 10.1007/s003480050370
  • Marusic I, Kunkel GJ. Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys Fluids. 2003;15(8):2461–2464. doi: 10.1063/1.1589014
  • Kunkel GJ, Marusic I. Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J Fluid Mech. 2006;548:375–402. doi: 10.1017/S0022112005007780
  • Marusic I, Hutchins N. Study of the log-layer structure in wall turbulence over a very large range of Reynolds number. Flow Turbulence Combust. 2008;81(1-2):115–130. doi: 10.1007/s10494-007-9116-0
  • McKeon BJ. The engine behind (wall) turbulence: perspectives on scale interactions. J Fluid Mech. 2017;817:P1/1–P1/86. doi: 10.1017/jfm.2017.115
  • Dean RB. Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J Fluids Eng. 1978;100(2):215–223. doi: 10.1115/1.3448633
  • Zanoun E-S, Nagib H, Durst F. Refined cf relation for turbulent channels and consequences for high-Re experiments. Fluid Dyn Res. 2009;41(2):021405. doi: 10.1088/0169-5983/41/2/021405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.