322
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental evaluation of the mean momentum and kinetic energy balance equations in turbulent pipe flows at high Reynolds number

ORCID Icon, , ORCID Icon, , &
Pages 285-299 | Received 30 Nov 2018, Accepted 29 May 2019, Published online: 11 Jun 2019

References

  • Vallilkivi M, Ganapathisubramani B, Smits AJ. Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J Fluid Mech. 2015;771:303–326. doi: 10.1017/jfm.2015.181
  • Smits AJ, McKeon BJ, Marusic I. High Reynolds number wall turbulence. Annu Rev Fluid Mech. 2011;43:353–375. doi: 10.1146/annurev-fluid-122109-160753
  • Wei T, Fifa P, Klewicki J, et al. Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J Fluid Mech. 2005;522:303–327. doi: 10.1017/S0022112004001958
  • Pashtrapanska M. Experimentelle Untersuchung der turbulenten Rohrströmungen mit abklingender Drallkomponente [PhD dissertation]. Universität Erlangen Nürnberg; 2004.
  • Zanoun E-S, Durst F, Nagib H. Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids. 2003;15:3079. doi: 10.1063/1.1608010
  • Tennekes H. Outline of a second-order theory of turbulent pipe flow. AIAA J. 1968;6:1735–1740. doi: 10.2514/3.4852
  • Afzal N. Power and log laws velocity profiles in fully developed turbulent pipe flows: equivalent relations at large Reynolds numbers. Acta Mech. 2001;151:171–183. doi: 10.1007/BF01246916
  • Panton RL. A Reynolds stress function for wall layers. J Fluids Eng. 1997;119:325–330. doi: 10.1115/1.2819137
  • Gad-el-Hak M, Bandyopadhyay PR. Reynolds number effect on wall-bounded flows. Appl Mech Rev. 1994;47:307–365. doi: 10.1115/1.3111083
  • Akinlade OG. Effects of surface roughness on the flow characteristics in a turbulent boundary layer [PhD thesis]. Saskatoon: University of Saskatchewan; 2005.
  • Wei T, Willmarth WW. Reynolds number effects on the structures of a turbulent channel flow. J Fluid Mech. 1989;204:57–95. doi: 10.1017/S0022112089001667
  • Laufer J. Investigation of turbulent flow in a two-dimensional channel. Washington (DC): NACA; 1951. (NACA Report R-1053).
  • Hutchins N, Nickels TB, Marusic I, et al. Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech. 2009;635:103–136. doi: 10.1017/S0022112009007721
  • Hutchins N, Monty JP, Hultmark M, et al. A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence. Exp Fluids. 2015;56:18. doi: 10.1007/s00348-014-1856-8
  • Talluru KM, Kulandaivelu V, Hutchins N. A calibration technique to correct sensor drift issues in hot-wire anemometry. Meas Sci Technol. 2014;25:105304. doi: 10.1088/0957-0233/25/10/105304
  • Örlü R, Fransson JHM, Alfredsson PH. On near wall measurements of wall bounded flows–the necessity of an accurate determination of the wall position. Prog Aerosp Sci. 2010;46:353–387. doi: 10.1016/j.paerosci.2010.04.002
  • König K, Zanoun ES, Öngüner E. The CoLaPipe – the new Cottbus large pipe test facility at Brandenburg University of technology Cottbus-Senftenberg. Rev Sci Instrum. 2014;85:075115. doi: 10.1063/1.4884717
  • Fiorini T. Turbulent pipe flow high resolution measurements in CICLoPE [PhD thesis]. Universita DI Bologna; 2017.
  • Örlü R, Fiorini T, Segalini A. Reynolds stress scaling in pipe flow turbulence–first results from CICLoPE. Phil Trans R Soc A. 2017;375:20160187. doi: 10.1098/rsta.2016.0187
  • Zanoun E-S, Durst F, Bayoumy O, et al. Wall skin friction and mean velocity profiles of fully developed turbulent pipe flows. Exp Therm Fluid Sci. 2007;32:249–261. doi: 10.1016/j.expthermflusci.2007.04.002
  • Tennekes H, Lumley JL. First course in turbulence. 1st ed. Cambridge: MIT Press; 1972.
  • George WK, Castillo L. Zero-pressure-gradient turbulent boundary layer. Appl Mech Rev. 1997;50:689–729. doi: 10.1115/1.3101858
  • Sahay A, Sreenivasan KR. The wall-normal position in pipe and channel flows at which viscous and turbulent shear stresses are equal. Phys Fluids. 1999;11:3186–3188. doi: 10.1063/1.870174
  • Zagarola MV, Smits AJ. Mean-flow scaling of turbulent flow. J Fluid Mech. 1998;373:33–79. doi: 10.1017/S0022112098002419
  • Prandtl L. Reibungswiederstand, hydrodynamische Probleme des Schiffsantriebs, herausgeg, v. G. Kempf u. E. Förster 1932 S. 87; Neuere Ergebnisse der Turbulenzforschung, Z. VDI Bd. 77 (1933) Nr. 5 S. 105; Ergebnisse der Aerodynamischen Versuchsanstalt Göttingen, 3 Lief. (1927) S. 1, (English Transl. NACA TM 720).
  • Blasius H. Boundary layer in fluids with little friction. Z Math Phys. 1908;56:1–37.
  • Millikan CM. A critical discussion of turbulent flows in channels and circular tubes. Proceedings of the fifth International Congress for Applied Mechanics, 386, 1938.
  • Wosnik M, Castillo L, George W. A theory for turbulent pipe and channel flows. J Fluid Mech. 2000;421:115. doi: 10.1017/S0022112000001385
  • Ahn J, Lee JH, Lee J. Direct numerical simulation of a 30R long turbulent pipe flow at Reτ = 3008. Phys Fluids. 2015;27:065110. doi: 10.1063/1.4922612
  • Feldmann D, Bauer C, Wagner C. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow. J Turbulence. 2018;19(3):274–295. doi: 10.1080/14685248.2017.1418086
  • Bruun HH. Hot-wire anemometry. New York (NY): Oxford University Press; 1995.
  • Perry AE, Abell CJ. Scaling laws for pipe-flow turbulence. J Fluid Mech. 1975;67:257–271. doi: 10.1017/S0022112075000298
  • Laadhari F. The evolution of maximum turbulent kinetic energy production in a channel flow. Phys Fluids. 2002;14(10):L65–L68. doi: 10.1063/1.1511731
  • Afzal N, Seena A, Bushra A. Turbulent energy production peak and its location from inner most log law or power law velocity in a turbulent channel/pipe and Couette flows. Eur J Mech B/Fluids. 2018;67:178–184. doi: 10.1016/j.euromechflu.2017.08.013
  • Panton RL. Overview of the self-sustaining mechanisms of wall turbulence. Prog Aerosp Sci. 2001;37:341–383. doi: 10.1016/S0376-0421(01)00009-4
  • Marusic I, Mathis R, Hutchins N. High Reynolds number effects in wall turbulence. Int J Heat Fluid Flow. 2010;31:418–428. doi: 10.1016/j.ijheatfluidflow.2010.01.005
  • Zhao R, Li J, Smits A. A new calibration method for crossed hot wires. Meas Sci Technol. 2004;15:1926. doi: 10.1088/0957-0233/15/9/033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.