310
Views
8
CrossRef citations to date
0
Altmetric
Articles

Topological evolution near the turbulent/non-turbulent interface in turbulent mixing layer

&
Pages 300-321 | Received 14 Nov 2018, Accepted 26 Jun 2019, Published online: 11 Jul 2019

References

  • Buxton ORH, Ganapathisubramani B. Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J Fluid Mech. 2010;651:483–502. doi: 10.1017/S0022112009993892
  • Abe H, Antonia RA, Kawamura H. Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow. J Fluid Mech. 2009;627:1–32. doi: 10.1017/S0022112008005569
  • Andreopoulos Y, Honkan A. An experimental study of the dissipative and vortical motion in turbulent boundary layers. J Fluid Mech. 2001;439:131–163. doi: 10.1017/S0022112001004475
  • Lee K, Girimaji SS, Kerimo J. Effect of compressibility on turbulent velocity gradients and small-scale structure. J Turbul. 2009;10:1–18. doi: 10.1080/14685240902767016
  • Meneveau C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu Rev Fluid Mech. 2011;43:219–245. doi: 10.1146/annurev-fluid-122109-160708
  • Wallace JM. Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: what have we learned about turbulence? Phys Fluids. 2009;21:021301. doi: 10.1063/1.3046290
  • Cantwell BJ. Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys Fluids A. 1992;4:782–793. doi: 10.1063/1.858295
  • Li Y, Chevillard L, Eyink G, et al. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor. Phys Rev E.. 2009;79:016305.
  • Li Y, Meneveau C. Intermittency trends and Lagrangian evolution of non-Gaussian statistics in turbulent flow and scalar transport. J Fluid Mech. 2006;558:133–142. doi: 10.1017/S002211200600005X
  • Chong MS, Perry AE, Cantwell BJ. A general classification of three-dimensional flow fields. Phys Fluids A. 1990;2:765–777. doi: 10.1063/1.857730
  • Soria J, Sondergaard R, Cantwell BJ, et al. A study of the fine-scale motions of incompressible time-developing mixing layers. Phys Fluids. 1994;6:871–884. doi: 10.1063/1.868323
  • Perry AE, Chong MS. Topology of flow patterns in vortex motions and turbulence. Appl Sci Res. 1994;53:357–374. doi: 10.1007/BF00849110
  • Blackburn HM, Mansour NN, Cantwell BJ. Topology of fine-scale motions in turbulent channel flow. J Fluid Mech. 1996;310:269–292. doi: 10.1017/S0022112096001802
  • Chong MS, Soria J, Perry AE, et al. Turbulence structures of wall-bounded shear flows found using DNS data. J Fluid Mech. 1998;357:225–247. doi: 10.1017/S0022112097008057
  • Ooi A, Martin J, Soria J, et al. A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J Fluid Mech. 1999;381:141–174. doi: 10.1017/S0022112098003681
  • Suman S, Girimaji SS. Velocity gradient invariants and local flow-field topology in compressible turbulence. J Turbul. 2010;11:1–24. doi: 10.1080/14685241003604751
  • daSilva CB, Pereira JCF. Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys Fluids. 2008;20:055101.
  • Elsinga GE, Marusic I. Evolution and lifetimes of flow topology in a turbulent boundary layer. Phys Fluids. 2010;22:015102. doi: 10.1063/1.3291070
  • Pirozzoli S, Grasso F. Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys Fluids. 2004;16:4386–4407. doi: 10.1063/1.1804553
  • Wang L, Lu XY. Flow topology in compressible turbulent boundary layer. J Fluid Mech. 2012;703:255–278. doi: 10.1017/jfm.2012.212
  • Vaghefi NS, Madnia CK. Local flow topology and velocity gradient invariants in compressible turbulent mixing layer. J Fluid Mech. 2015;774:67–94. doi: 10.1017/jfm.2015.235
  • Martin J, Ooi A, Chong MS, et al. Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys Fluids. 1998;10:2336–2346. doi: 10.1063/1.869752
  • Lawson JM, Dawson JR. On velocity gradient dynamics and turbulent structure. J Fluid Mech. 2015;780:60–98. doi: 10.1017/jfm.2015.452
  • Lozano-Durán A, Holzner M, Jiménez J. Numerically accurate computation of the conditional trajectories of the topological invariants in turbulent flows. J Comput Phys. 2015;295:805–814. doi: 10.1016/j.jcp.2015.04.036
  • Chevillard L, Meneveau C, Biferale L, et al. Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys Fluids. 2008;20:101504. doi: 10.1063/1.3005832
  • Suman S, Girimaji SS. Velocity gradient dynamics in compressible turbulence: characterization of pressure-Hessian tensor. Phys Fluids. 2013;25:125103. doi: 10.1063/1.4834395
  • Wilczek M, Meneveau C. Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J Fluid Mech. 2014;756:191–225. doi: 10.1017/jfm.2014.367
  • Chu YB, Lu XY. Topological evolution in compressible turbulent boundary layers. J Fluid Mech. 2013;733:414–438. doi: 10.1017/jfm.2013.399
  • Bechlars P, Sandberg RD. Evolution of the velocity gradient tensor invariant dynamics in a turbulent boundary layer. J Fluid Mech. 2017;815:223–242. doi: 10.1017/jfm.2017.40
  • da Silva CB, Hunt JCR, Eames I, et al. Interfacial layers between regions of different turbulence intensity. Annu Rev Fluid Mech. 2014;46:567–590. doi: 10.1146/annurev-fluid-010313-141357
  • Silva TS, Zecchetto M, da Silva CB. The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J Fluid Mech. 2018;843:156–179. doi: 10.1017/jfm.2018.143
  • Hunt JCR, Eames I, Westerweel J. Mechanics of inhomogeneous turbulence and interfacial layers. J Fluid Mech. 2006;554:499–519. doi: 10.1017/S002211200600944X
  • Bisset DK, Hunt JCR, Rogers MM. The turbulent/non-turbulent interface bounding a far wake. J Fluid Mech. 2002;451:383–410. doi: 10.1017/S0022112001006759
  • Holzner M, Lüthi B. Laminar superlayer at the turbulence boundary. Phys Rev Lett. 2011;106:134503. doi: 10.1103/PhysRevLett.106.134503
  • Attili A, Cristancho JC, Bisetti F. Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer. J Turbul. 2014;15:555–568. doi: 10.1080/14685248.2014.919394
  • Watanabe T, Sakai Y, Nagata K, et al. Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys Fluids. 2015;27:085109.
  • Westerweel J, Fukushima C, Pedersen JM, et al. Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J Fluid Mech. 2009;631:199–230. doi: 10.1017/S0022112009006600
  • da Silva CB, dos Reis RJN, Pereira JCF. The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J Fluid Mech. 2011;685:165–190. doi: 10.1017/jfm.2011.296
  • Taveira RR, da Silva CB. Kinetic energy budgets near the turbulent/nonturbulent interface in jets. Phys Fluids. 2013;25:015114. doi: 10.1063/1.4776780
  • Chauhan K, Philip J, Marusic I. Scaling of the turbulent/non-turbulent interface in boundary layers. J Fluid Mech. 2014;751:298–328. doi: 10.1017/jfm.2014.298
  • Ishihara T, Ogasawara H, Hunt JCR. Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers. J Fluids Struct. 2015;53:50–57. doi: 10.1016/j.jfluidstructs.2014.10.008
  • Jahanbakhshi R, Vaghefi NS, Madnia CK. Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys Fluids. 2015;27:105105. doi: 10.1063/1.4933250
  • Holzner M, Liberzon A, Nikitin N, et al. Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface. Phys Fluids. 2007;19:071702. doi: 10.1063/1.2746037
  • Wolf M, Holzner M, Lüthi B, et al. Effects of mean shear on the local turbulent entrainment process. J Fluid Mech. 2013;731:95–116. doi: 10.1017/jfm.2013.365
  • Watanabe T, Sakai Y, Nagata K, et al. Enstrophy and passive scalar transport near the turbulent/non-turbulent interface in a turbulent planar jet flow. Phys Fluids. 2014;26:105103.
  • Holzner M, Liberzon A, Nikitin N, et al. A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J Fluid Mech. 2008;598:465–475. doi: 10.1017/S0022112008000141
  • Taveira RR, Diogo JS, Lopes DC, et al. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet. Phys Rev E. 2013;88:043001. doi: 10.1103/PhysRevE.88.043001
  • Watanabe T, Jaulino R, Taveira R, et al. Role of an isolated eddy near the turbulent/non-turbulent interface layer. Phys Rev Fluids. 2017;2:094607.
  • Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. J Comput Phys. 1996;126:202–228. doi: 10.1006/jcph.1996.0130
  • Pantano C, Sarkar S. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J Fluid Mech. 2002;451:329–371. doi: 10.1017/S0022112001006978
  • Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys. 2003;186:652–665. doi: 10.1016/S0021-9991(03)00090-1
  • Taguelmimt N, Danaila L, Hadjadj A. Effects of viscosity variations in temporal mixing layer. Flow Turbul Combust. 2016;96:163–181. doi: 10.1007/s10494-015-9649-6
  • Thompson KW. Time dependent boundary conditions for hyperbolic systems. J Comput Phys. 1987;68:1–24. doi: 10.1016/0021-9991(87)90041-6
  • Bell JH, Mehta RD. Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 1990;28:2034–2042. doi: 10.2514/3.10519
  • Borrell G, Jiménez J. Properties of the turbulent/non-turbulent interface in boundary layers. J Fluid Mech. 2016;801:554–596. doi: 10.1017/jfm.2016.430
  • Lee J, Sung HJ, Zaki TA. Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. J Fluid Mech. 2017;819:165–187. doi: 10.1017/jfm.2017.170
  • Westerweel J, Fukushima C, Pedersen JM, et al. Mechanics of the turbulent-non/turbulent interface of a jet. Phys Rev Lett. 2005;95:174501.
  • Jahanbakhshi R, Madnia CK. Entrainment in a compressible turbulent shear layer. J Fluid Mech. 2016;797:564–603. doi: 10.1017/jfm.2016.296
  • Bechlars P, Sandberg RD. Variation of enstrophy production and strain rotation relation in a turbulent boundary layer. J Fluid Mech. 2017;812:321–348. doi: 10.1017/jfm.2016.794
  • Ashurst WT, Kerstein AR, Kerr RM, et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys Fluids. 1987;30:2343–2353. doi: 10.1063/1.866513
  • Hamlington PE, Schumacher J, Dahm WJA. Local and nonlocal strain rate fields and vorticity alignment in turbulent flows. Phys Rev E. 2008;77:1–8. doi: 10.1103/PhysRevE.77.026303
  • Vincent A, Meneguzzi M. The dynamics of vorticity tubes in homogeneous turbulence. J Fluid Mech. 1994;258:245–254. doi: 10.1017/S0022112094003319
  • Lozano-Durán A, Holzner M, Jiménez J. Multiscale analysis of the topological invariants in the logarithmic region of turbulent channels at a friction Reynolds number of 932. J Fluid Mech. 2016;803:356–394. doi: 10.1017/jfm.2016.504

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.