155
Views
0
CrossRef citations to date
0
Altmetric
Articles

Direct numerical simulations of second-order Stokes wave driven smooth-walled oscillatory channel: investigation of net current formation

, , , , , , , & show all
Pages 360-380 | Received 21 Jan 2019, Accepted 09 Jul 2019, Published online: 08 Aug 2019

References

  • Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when their pressure gradient is known. J Physiol. 1955;127:553–563. doi: 10.1113/jphysiol.1955.sp005276
  • Ribberink J, Al-Salem A. Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow. J Geophys Res. 1994;99:12707–12727. doi: 10.1029/94JC00380
  • Ribberink J, Al-Salem A. Sheet flow and suspension of sand in oscillatory boundary layers. Coast. Eng. 1995;25:205–225. doi: 10.1016/0378-3839(95)00003-T
  • Davies A, Li Z. Modeling sediment transport beneath regular symmetrical and asymmetrical waves above a plane bed. Contin Shelf Res. 1997;17:555–582. doi: 10.1016/S0278-4343(96)00048-9
  • Dibajnia M, Watanabe A. Transport rate under irregular sheet flow conditions. Coast Eng. 1998;35:167–183. doi: 10.1016/S0378-3839(98)00034-9
  • Ahmed S, Sato S. A sheet flow transport model for asymmetric oscillatory flows: part I: uniform grain size sediments. Coast Eng. 2003;45:321–337. doi: 10.1142/S0578563403000786
  • O’Donoughe T, Wright S. Flow tunnel measurements of velocities and sand flux in oscillatory sheet flow for well-sorted and graded sands. Coast Eng. 2004;51:1163–1184. doi: 10.1016/j.coastaleng.2004.08.001
  • Holmedal L, Myrhaugh D. Boundary layer flow and net sediment transport beneath asymmetrical waves. Coast Eng. 2006;26:252–268.
  • Fuhrman D, FredsØe J, Sumer B. Bed slope effects on turbulent wave boundary layers: 2. comparison with skewness, asymmetry, and other effects. J Geophys Res. 2009;114:(C03025-1)–(C03025-19).
  • van der Werf JJ, Schretlen LM, Ribberink JS, et al. Database of full-scale laboratory experiments on wave-driven sand transport processes. Coast Eng. 2009;56:726–732. doi: 10.1016/j.coastaleng.2009.01.008
  • Yuan J, Madsen O. Experimental study of turbulent oscillatory boundary layers in an oscillating water tunnel. Coast Eng. 2014a;89:63–84. doi: 10.1016/j.coastaleng.2014.03.007
  • Yuan J, Madsen O. Experimental and theoretical study of wave-current turbulent boundary layers. J Fluid Mech. 2014b;765:480–523. doi: 10.1017/jfm.2014.746
  • Scandura P. Steady streaming in a turbulent oscillating boundary layer. J Fluid Mech. 2007;571:265–280. doi: 10.1017/S0022112006002965
  • Ozdemir C, Hsu T, Balachandar S. A numerical investigation of fine particle laden flow in oscillatory channel: The role of particle-induced density stratification. J Fluid Mech. 2010;665:1–45. doi: 10.1017/S0022112010003769
  • Ozdemir C, Hsu T, Balachandar S. Direct numerical simulations of instability and boundary layer turbulence under a solitary wave. J Fluid Mech. 2013;731:545–578. doi: 10.1017/jfm.2013.361
  • Ozdemir C, Yu X. Direct numerical simulations spanwise slope-induced turbidity currents in a fine sediment-laden steady turbulent channel: role of suspended sediment concentration and settling velocity. Phys Fluids. 2018;30:8849–8878. doi: 10.1063/1.5054664
  • Peyret R. Spectral methods for incompressible viscous flow. New York (USA): Springer; 2002.
  • Canuto C, Hussaini M, Quarteroni A, et al. Spectral methods in fluid dynamics. Berlin and Heidelberg (Germany): Springer-Verlag; 1987.
  • Arakawa A. Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J Comput Physics. 1966;1:119–143. doi: 10.1016/0021-9991(66)90015-5
  • Hino M, Sawamoto M, Takasu S. Experiments on transition to turbulence in an oscillatory pipe flows. J Fluid Mech. 1976;75:193–207. doi: 10.1017/S0022112076000177
  • Vittori G, Verzicco R. Direct simulation of transition in an oscillatory boundary layer. J Fluid Mech. 1998;371:207–232. doi: 10.1017/S002211209800216X
  • Carstensen S, Sumer BM, FredsØe J. Coherent structures in wave boundary layer. Part 1. Oscillatory motion. J Fluid Mech. 2010;646:169–206. doi: 10.1017/S0022112009992825
  • Ozdemir C, Hsu T, Balachandar S. Direct numerical simulations of transition and turbulence in smooth-walled Stokes boundary layer. Phys Fluids. 2014;26:045108-1–045108-25. doi: 10.1063/1.4871020
  • Jensen BL, Sumer M, FredsØe J. Turbulent oscillatory boundary layers at high Reynolds numbers. J Fluid Mech. 1989;206:265–297. doi: 10.1017/S0022112089002302
  • Salon S, Armenio S, Crise A. A numerical investigation of the Stokes boundary layer in the turbulent regime. J Fluid Mech. 2007;570:253–296. doi: 10.1017/S0022112006003053
  • Spalart PR, Baldwin BS. Direct simulation of a turbulent oscillating boundary layer. Moffett Field (CA): NASA Tech. Mem. 89460, Ames Research Center; 1987.
  • Tuzi R, Blondeaux P. Intermittent turbulence in pulsating pipe flow. J Fluid Mech. 2008;599:51–79. doi: 10.1017/S0022112007009354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.