360
Views
10
CrossRef citations to date
0
Altmetric
Articles

Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow

, , , &
Pages 424-438 | Received 14 Apr 2019, Accepted 14 Aug 2019, Published online: 16 Sep 2019

References

  • Sabban L, van Hout R. Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J Aerosol Sci. 2011;42:867–882. doi: 10.1016/j.jaerosci.2011.08.001
  • Wang G, Zheng X. Very large scale motions in the atmospheric surface layer: a field investigation. J Fluid Mech. 2016;802:464–489. doi: 10.1017/jfm.2016.439
  • Pedley TJ, Kessler JO. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech. 1992;24:313–358. doi: 10.1146/annurev.fl.24.010192.001525
  • Lundell F, Söderberg LD, Alfredsson PH. Fluid mechanics of papermaking. Annu Rev Fluid Mech. 2011;43:195–217. doi: 10.1146/annurev-fluid-122109-160700
  • Voth GA, Soldati A. Anisotropic particles in turbulence. Annu Rev Fluid Mech. 2017;49:249–276. doi: 10.1146/annurev-fluid-010816-060135
  • Challabotla NR, Zhao L, Andersson HI. Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys Fluids. 2015;27:061703. doi: 10.1063/1.4922864
  • Challabotla NR, Zhao L, Andersson HI. Orientation and rotation dynamics of triaxial ellipsoidal tracers in wall turbulence. Phys Fluids. 2016;28:123304. doi: 10.1063/1.4971318
  • Meinhart CD, Adrian RJ. On the existence of uniform momentum zones in a turbulent boundary layer. Phys Fluids. 1995;7:694–696. doi: 10.1063/1.868594
  • Chauhan K, Philip J, de Silva CM, et al. The turbulent/non-turbulent interface and entrainment in a boundary layer. J Fluid Mech. 2014;742:119–151. doi: 10.1017/jfm.2013.641
  • de Silva CM, Hutchins N, Marusic I. Uniform momentum zones in turbulent boundary layers. J Fluid Mech. 2016;786:309–331. doi: 10.1017/jfm.2015.672
  • Saxton-Fox T, McKeon BJ. Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J Fluid Mech. 2017;826:R6. doi: 10.1017/jfm.2017.493
  • Kwon YS, Philip J, de Silva CM, et al. The quiescent core of turbulent channel flow. J Fluid Mech. 2014;751:228–254. doi: 10.1017/jfm.2014.295
  • Eisma J, Westerweel J, Ooms G, et al. Interfaces and internal layers in a turbulent boundary layer. Phys Fluids. 2015;27:055103. doi: 10.1063/1.4919909
  • Borrell G, Jimenéz J. Properties of the turbulent/non-turbulent interface in boundary layers. J Fluid Mech. 2016;801:554–596. doi: 10.1017/jfm.2016.430
  • Yang J, Hwang J, Sung HJ. Structural organization of the quiescent core region in a turbulent channel flow. Int J Heat Fluid Fl. 2016;62(Part B):455–463. doi: 10.1016/j.ijheatfluidflow.2016.08.013
  • Parsa S, Calzavarini E, Toschi F, et al. Rotation rate of rods in turbulent fluid flow. Phys Rev Lett. 2012;109:134501. doi: 10.1103/PhysRevLett.109.134501
  • Marcus GG, Parsa S, Kramel S, et al. Measurements of the solid-body rotation of anisotropic particles in 3d turbulence. New J Phys. 2014;16:102001. doi: 10.1088/1367-2630/16/10/102001
  • Gustavsson K, Einarsson J, Mehlig B. Tumbling of small axisymmetric particles in random and turbulent flows. Phys Rev Lett. 2014;112:014501.
  • Ni R, Ouellette NT, Voth GA. Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J Fluid Mech. 2014;743:R3. doi: 10.1017/jfm.2014.32
  • Byron M, Einarsson J, Gustavsson K, et al. Shape-dependence of particle rotation in isotropic turbulence. Phys Fluids. 2015;27:035101. doi: 10.1063/1.4913501
  • Bernstein O, Shapiro M. Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows. J Aerosol Sci. 1994;25:113–136. doi: 10.1016/0021-8502(94)90185-6
  • Sabban L, Cohen A, van Hout R. Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence. J Fluid Mech. 2017;814:42–68. doi: 10.1017/jfm.2017.12
  • Kuperman S, Sabban L, van Hout R. Inertial effects on the dynamics of rigid heavy fibers in isotropic turbulence. Phys Rev Fluids. 2019;4:064301. doi: 10.1103/PhysRevFluids.4.064301
  • Zhang H, Ahmadi G, Fan FG, et al. Ellipsoidal particles transport and deposition in turbulent channel flows. Int J Multiphase Flow. 2001;27:971–1009. doi: 10.1016/S0301-9322(00)00064-1
  • Mortensen PH, Andersson HI, Gillissen JJJ, et al. On the orientation of ellipsoidal particles in a turbulent shear flow. Int J Multiphase Flow. 2008;34:678–683. doi: 10.1016/j.ijmultiphaseflow.2007.12.007
  • Mortensen PH, Andersson HI, Gillissen JJJ, et al. Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys Fluids. 2008;20:093302. doi: 10.1063/1.2975209
  • Marchioli C, Fantoni M, Soldati A. Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys Fluids. 2010;22:033301. doi: 10.1063/1.3328874
  • Zhao L, Challabotla NR, Andersson HI, et al. Rotation of nonspherical particles in turbulent channel flow. Phys Rev Lett. 2015;115:244501.
  • Challabotla NR, Zhao L, Andersson HI. Orientation and rotation of inertial disk particles in wall turbulence. J Fluid Mech. 2015;766:R2. doi: 10.1017/jfm.2015.38
  • Zhao L, Andersson HI. Why spheroids orient preferentially in near-wall turbulence. J Fluid Mech. 2016;807:221–234. doi: 10.1017/jfm.2016.619
  • Moosaie A, Manhart M. An algebraic closure for the DNS of fiber-induced turbulent drag reduction in a channel flow. J Non-Newtonian Fluid Mech. 2011;166:1190–1197. doi: 10.1016/j.jnnfm.2011.07.006
  • Gillissen JJJ, Boersma BJ, Mortensen PH, et al. On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow. Phys Fluids. 2007;19:035102.
  • Andersson HI, Zhao L, Barri M. Torque-coupling and particle–turbulence interactions. J Fluid Mech. 2012;696:319–329. doi: 10.1017/jfm.2012.44
  • Zhao F, George WK, van Wachem BGM. Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number. Phys Fluids. 2015;27:083301.
  • Bernardini M. Reynolds number scaling of inertial particle statistics in turbulent channel flows. J Fluid Mech. 2014;758:R1. doi: 10.1017/jfm.2014.561
  • Ouchene R, Polanco JI, Vinkovic I, et al. Acceleration statistics of prolate spheroidal particles in turbulent channel flow. J Turbul. 2018;19:827–848. doi: 10.1080/14685248.2018.1516043
  • Perlman E, Burns R, Li Y. Data exploration of turbulence simulations using a database cluster. SC '07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing; 2007; Reno, NV, USA, 1–11.
  • Li Y, Perlman E, Wan M, et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J Turbul. 2008;9:N31. doi: 10.1080/14685240802376389
  • Graham J, Kanov K, Yang XIA, et al. A Web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J Turbul. 2016;17:181–215. doi: 10.1080/14685248.2015.1088656
  • Jeffery GB. The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London Ser A. 1922;102:161–179. doi: 10.1098/rspa.1922.0078
  • Kuerten JGM. Point-particle DNS and LES of particle-laden turbulent flow – a state-of-the-art review. Flow Turbul Combust. 2016;97:689–713. doi: 10.1007/s10494-016-9765-y
  • Eaton JK. Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int J Multiphase Flow. 2009;35:792–800. doi: 10.1016/j.ijmultiphaseflow.2009.02.009
  • Yu H, Kanov K, Perlman E, et al. Studying Lagrangian dynamics of turbulence using on-demand fluid particle tracking in a public turbulence database. J Turbul. 2012;13:N12. doi: 10.1080/14685248.2012.674643
  • Johnson PL, Meneveau C. Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence. Phys Fluids. 2015;27:085110. doi: 10.1063/1.4928699
  • Johnson PL, Meneveau C. Large-deviation statistics of vorticity stretching in isotropic turbulence. Phys Rev E. 2016;93:033118.
  • Adrian RJ, Meinhart CD, Tomkins CD. Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech. 2000;422:1–54. doi: 10.1017/S0022112000001580
  • Marchioli C, Soldati A. Rotation statistics of fibers in wall shear turbulence. Acta Mech. 2013;224:2311–2329. doi: 10.1007/s00707-013-0933-z
  • Yang K, Zhao L, Andersson HI. Mean shear versus orientation isotropy: effects on inertialess spheroids' rotation mode in wall turbulence. J Fluid Mech. 2018;844:796–816. doi: 10.1017/jfm.2018.205
  • Smits AJ, McKeon BJ, Marusic I. High−Reynolds number wall turbulence. Annu Rev Fluid Mech. 2011;43:353–375. doi: 10.1146/annurev-fluid-122109-160753
  • Andersson HI, Zhao L, Variano EA. On the anisotropic vorticity in turbulent channel flows. J Fluid Eng. 2015;137:084503–084503–3.
  • Ni R, Kramel S, Ouellette NT, et al. Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J Fluid Mech. 2015;766:202–225. doi: 10.1017/jfm.2015.16
  • Ardekani MN, Sardina G, Brandt L, et al. Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton. J Fluid Mech. 2017;831:655–674. doi: 10.1017/jfm.2017.670
  • Zhao L, Gustavsson K, Ni R, et al. Passive directors in turbulence. Phys Rev Fluids. 2019;4:054602.
  • de Gennes PG, Prost J. The Physics of Liquid Crystals. 2nd ed. Oxford: Oxford University Press; 1995. (International Series of Monographs on Physics)
  • Ardekani MN, Costa P, Breugem WP, et al. Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J Fluid Mech. 2017;816:43–70. doi: 10.1017/jfm.2017.68
  • Jiménez J. Cascades in wall-bounded turbulence. Annu Rev Fluid Mech. 2012;44:27–45. doi: 10.1146/annurev-fluid-120710-101039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.