530
Views
9
CrossRef citations to date
0
Altmetric
Articles

A generalised wall function including compressibility and pressure-gradient terms for the Spalart–Allmaras turbulence model

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 626-660 | Received 19 Jun 2019, Accepted 29 Oct 2019, Published online: 17 Nov 2019

References

  • Launder BE, Spalding DB. Lectures in mathematical models of turbulence; Academic Press, London, UK, 1972.
  • White FM, Christoph G. A simple theory for the two-dimensional compressible turbulent boundary layer. J Basic Eng. 1972;94(3):636–642. doi: 10.1115/1.3425519
  • Tennekes H, Lumley JL. A first course in turbulence. Cambridge, Massachusetts, and London, England: MIT Press; 1972.
  • Nichols RH, Nelson C. Wall function boundary conditions including heat transfer and compressibility. AIAA J. 2004;42(6):1107–1114. doi: 10.2514/1.3539
  • Ota DK, Goldberg UC. Law of the wall with consistent no-slip limit. AIAA Paper; Atlanta, GA, U.S.A; 1997. p. 97–2246.
  • Viegas J, Rubesin M, Horstman C. On the use of wall functions as boundary conditions for two-dimensional separated compressible flows. 23rd Aerospace Sciences Meeting; Reno, NV, U.S.A; 1985. p. 180.
  • Smith B. The k-kl turbulence model and wall layer model for compressible flows. 21st Fluid dynamics, plasma dynamics and lasers conference; Seattle, WA, U.S.A; 1990. p. 1483.
  • Craft T, Gant S, Iacovides H, et al. A new wall function strategy for complex turbulent flows. Numer Heat Transf B. 2004;45(4):301–318. doi: 10.1080/10407790490277931
  • Nichols R. Development and validation of a two-equation turbulence model with wall functions for compressible flow. 14th Applied Aerodynamics Conference; New Orleans, LA, U.S.A; 1996. p. 2385.
  • Goldberg U, Peroomian O, Chakravarthy S. A wall-distance-free k-ϵ model with enhanced near-wall treatment. J Fluids Eng. 1998;120(3):457–462. doi: 10.1115/1.2820684
  • Knopp T, Alrutz T, Schwamborn D. A grid and flow adaptive wall-function method for rans turbulence modelling. J Comput Phys. 2006;220(1):19–40. doi: 10.1016/j.jcp.2006.05.003
  • Medic G, Kalitzin G, Iaccarino G. Adaptive wall functions with applications. 36th AIAA Fluid Dynamics Conference and Exhibit; San Francisco, California; 2006; 06-3744.
  • Menter F, Esch T. Elements of industrial heat transfer predictions. 16th Brazilian Congress of Mechanical Engineering (COBEM); Uberlandia, Minas Gerais, Brazil; Vol. 109; 2001. p. 117–127.
  • Menter F, Ferreira JC, Esch T. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. Proceedings of the international gas turbine congress; Tokyo, Japan; 2003. p. 2–7.
  • Menter F, Kuntz M, Langtry R. Ten years of industrial experience with the sst turbulence model. Turbul Heat Mass Transf. 2003;4(1):625–632.
  • Menter FR. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int J Comut Fluid Dyn. 2009;23(4):305–316. doi: 10.1080/10618560902773387
  • Segunda VM, Ormiston S, Tachie M. Numerical analysis of turbulent flow over a wavy wall in a channel. ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels; American Society of Mechanical Engineers; Washington, DC, USA; 2016. p. V01AT03A014–V01AT03A014.
  • Assam A, Kalkote NN, Sharma V, et al. An automatic wall treatment for Spalart-Allmaras turbulence model. J Fluids Eng. 2018 Jan. doi: 10.1115/1.4039087
  • Shih TH, Povinelli LA, Liu NS. Application of generalized wall function for complex turbulent flows. In: Rodi W, Fueyo N, editors. Engineering turbulence modelling and experiments. Vol. 5. Oxford: Elsevier Science Ltd; 2002. p. 177–186. Available from: http://www.sciencedirect.com/science/article/pii/B9780080441146500168
  • Ong K, Chan A. A unified wall function for compressible turbulence modelling. J Turbul. 2018;19(5):414–430. doi: 10.1080/14685248.2018.1453142
  • Shih TH, Povinelli LA, Liu NS. A generalized wall function; NASATM 209398; 1999.
  • Blazek J. Computational fluid dynamics principles and applications. San Diego (CA): Elsevier; 2005. Available from: http://www.sciencedirect.com/science/book/9780080445069
  • Weiss JM, Maruszewski JP, Smith WA. Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA J. 1999;37(1):29–36. doi: 10.2514/2.689
  • Sharma V, Assam A, Eswaran V. Development of all speed three dimensional computational fluid dynamics solver for unstructured grids. 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power (FMFP); Allahabad, India; 2016. p. 34.
  • Kays WM. Turbulent Prandtl number–where are we? J Heat Transfer. 1994;116(2):284–295. doi: 10.1115/1.2911398
  • Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows; 30th Aerospace Sciences Meeting and Exhibit; Reno, NV, U.S.A; 1992. p. 439.
  • Dacles-Mariani J, Zilliac GG, Chow JS, et al. Numerical/experimental study of a wingtip vortex in the near field. AIAA J. 1995;33(9):1561–1568. doi: 10.2514/3.12826
  • Dacles-Mariani J, Kwak D, Zilliac G. On numerical errors and turbulence modeling in tip vortex flow prediction.  Journal for Numerical Methods in Fluids Int J Numer Methods Fluids. 1999;30(1):65–82. doi: 10.1002/(SICI)1097-0363(19990515)30:1<65::AID-FLD839>3.0.CO;2-Y
  • Spalart PR, Rumsey CL. Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 2007;45(10):2544. doi: 10.2514/1.29373
  • Turbulence modeling resource; 2019. Available from: https://turbmodels.larc.nasa.gov/
  • Bredberg J. On the wall boundary condition for turbulence models. Goteborg: Department of Thermo and Fluid Dynamics, Chalmers University of Technology; 2000. Internal report 00/4.
  • Bredberg J, Peng S, Davidson L. On the wall boundary condition for computing turbulent heat transfer with K-omega models. ASME-Publications-HTD. 2000;366:243–250.
  • Moryossef Y, Levy Y. Unconditionally positive implicit procedure for two-equation turbulence models: application to k−ω turbulence models. J Comput Phys. 2006;220(1):88–108. doi: 10.1016/j.jcp.2006.05.001
  • Assam A, Eswaran V. Development of an unstructured cfd solver for external aerothermodynamics and nano/micro flows [dissertation]. Indian Institute of Technology Hyderabad; Hyderabad, India; 2019.
  • Kalkote N, Assam A, Eswaran V. Acceleration of later convergence in a density-based solver using adaptive time stepping. AIAA J. 2018;57(1):352–364. doi: 10.2514/1.J057014
  • Assam A, Kalkote N, Dongari N. Comprehensive evaluation of a new type of Smoluchowski temperature jump condition. AIAA Journal. 2018;56(11):4621–4625. doi:10.2514/1.J057385.
  • Nived MR. Parallelization of a hybrid unstructured grid density-based flow solver [master's thesis]. Indian Institute of Technology Hyderabad; 2018. Available from: http://raiith.iith.ac.in/4361/
  • Zhang Y, Bai JQ, Xu JL. A scale-adaptive turbulence model based on the k-equation and recalibrated reynolds stress constitutive relation. J Fluids Eng. 2016;138(6):61203. doi: 10.1115/1.4032535
  • Krist SL, Biedron RT, Rumsey CL. Cfl3d user's manual (version 5.0); 1998.
  • Wieghardt K, Tillmann W. On the turbulent friction layer for rising pressure, NASA, Washington, DC, Technical Report No. TM-1314, 1951.
  • Salim SM, Cheah S. Wall y+ strategy for dealing with wall-bounded turbulent flows. Proceedings of the International Multiconference of Engineers and Computer Scientists; Hong Kong, Vol. 2; 2009. p. 2165–2170.
  • Berger MJ, Aftosmis MJ. An ODE-based wall model for turbulent flow simulations. AIAA J. 2017 Sep;56(2):700–714. doi: 10.2514/1.J056151
  • Samuel A, Joubert P. A boundary layer developing in an increasingly adverse pressure gradient. J Fluid Mech. 1974;66(3):481–505. doi: 10.1017/S0022112074000322
  • Klein TS. The development and application of two-time-scale turbulence models for non-equilibrium flows [dissertation]. The University of Manchester; Manchester, UK; 2012.
  • Bardina J, Huang P, Coakley T. Turbulence modeling validation, testing, and development. NASA Technical Memorandum 110446; Ames Research Center, California, USA; 1997 May.
  • Cook P, McDonald M, Firmin M. Rae2822–pressure distributions, and boundary layer and wake measurements. Experimental data base for computer program assessment, Farnborough, UKAGARD, Report AR-138, 1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.