165
Views
0
CrossRef citations to date
0
Altmetric
Articles

On the kinematics of scalar iso-surfaces in decaying homogeneous, isotropic turbulence

, &
Pages 661-680 | Received 03 Mar 2019, Accepted 22 Oct 2019, Published online: 28 Nov 2019

References

  • da Silva CB, Hunt JC, Eames I, et al. Interfacial layers between regions of different turbulence intensity. Annu Rev Fluid Mech. 2014;46:567–590. doi: 10.1146/annurev-fluid-010313-141357
  • Poinsot T, Veynante D. Theoretical and numerical combustion. Bordeaux: RT Edwards, Inc.; 2005.
  • Marble FE, Broadwell JE. The coherent flame model for turbulent chemical reactions. Lafayette: DTIC Document; 1977.
  • Pope S. The evolution of surfaces in turbulence. Int J Eng Sci. 1988;26(5):445–469. doi: 10.1016/0020-7225(88)90004-3
  • Candel SM, Poinsot TJ. Flame stretch and the balance equation for the flame area. Combust Sci Technol. 1990;70(1–3):1–15. doi: 10.1080/00102209008951608
  • Trouvé A, Poinsot T. The evolution equation for the flame surface density in turbulent premixed combustion. J Fluid Mech. 1994;278:1–31. doi: 10.1017/S0022112094003599
  • Van Kalmthout E, Veynante D, Candel S. Direct numerical simulation analysis of flame surface density equation in non-premixed turbulent combustion. Int Symp Combust. 1996;26(1):35–42. doi: 10.1016/S0082-0784(96)80197-4
  • Vervisch L, Poinsot T. Direct numerical simulation of non-premixed turbulent flames. Annu Rev Fluid Mech. 1998;30(1):655–691. doi: 10.1146/annurev.fluid.30.1.655
  • Trouvé A. The production of premixed flame surface area in turbulent shear flow. Combust Flame. 1994;99(3–4):687–696. doi: 10.1016/0010-2180(94)90063-9
  • Van Kalmthout E, Veynante D. Direct numerical simulations analysis of flame surface density models for nonpremixed turbulent combustion. Phys Fluids. 1998;10(9):2347–2368. doi: 10.1063/1.869753
  • Jaberi F, Livescu D, Madnia C. Characteristics of chemically reacting compressible homogeneous turbulence. Phys Fluids. 2000;12(5):1189–1209. doi: 10.1063/1.870370
  • Chakraborty N, Cant R. Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys Fluids. 2005;17(6):065108. doi: 10.1063/1.1923047
  • Chakraborty N, Cant R. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust Flame. 2011;158(9):1768–1787. doi: 10.1016/j.combustflame.2011.01.011
  • Chakraborty N, Cant R. Turbulent Reynolds number dependence of flame surface density transport in the context of Reynolds averaged Navier–Stokes simulations. Proc Combust Inst. 2013;34(1):1347–1356. doi: 10.1016/j.proci.2012.07.071
  • Han I, Huh KY. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust Flame. 2008;152(1–2):194–205. doi: 10.1016/j.combustflame.2007.10.003
  • Wang H, Hawkes ER, Chen JH, et al. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame–an analysis of flame stretch and flame thickening. J Fluid Mech. 2017;815:511–536. doi: 10.1017/jfm.2017.53
  • Dopazo C, Martin J, Cifuentes L, et al. Strain, rotation and curvature of non-material propagating iso-scalar surfaces in homogeneous turbulence. Flow Turbul Combust. 2018;101(1):1–32. doi: 10.1007/s10494-017-9888-9
  • Gibson CH. Fine structure of scalar fields mixed by turbulence. I. Zero-gradient points and minimal gradient surfaces. Phys Fluids. 1968;11(11):2305–2315. doi: 10.1063/1.1691820
  • Canuto C, Hussaini MY, Quarteroni A. Spectral methods in fluid dynamics. New York: Springer; 2006.
  • Patterson G, Orszag SA. Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys Fluids. 1971;14(11):2538–2541. doi: 10.1063/1.1693365
  • Eswaran V, Pope S. An examination of forcing in direct numerical simulations of turbulence. Comput Fluids. 1988;16(3):257–278. doi: 10.1016/0045-7930(88)90013-8
  • de Bruyn Kops S, Riley J. Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys Fluids. 1998;10(9):2125–2127. doi: 10.1063/1.869733
  • Mell WE, Nilsen V, Kosály G, et al. Investigation of closure models for nonpremixed turbulent reacting flows. Phys Fluids. 1994;6(3):1331–1356. doi: 10.1063/1.868443
  • Eswaran V, Pope S. Direct numerical simulations of the turbulent mixing of a passive scalar. Phys Fluids. 1988;31(3):506–520. doi: 10.1063/1.866832
  • Storti D. Using lattice data to compute surface integral properties of digitized objects. Proceedings of IDMME–Virtual Concept; Bordeaux, France; 2010.
  • Yurtoglu M, Carton M, Storti D. Treat all integrals as volume integrals: a unified, parallel, grid-based method for evaluation of volume, surface, and path integrals on implicitly defined domains. J Comput Inf Sci Eng. 2018;18(2):021013. doi: 10.1115/1.4039639
  • Kim SH, Pitsch H. Scalar gradient and small-scale structure in turbulent premixed combustion. Phys Fluids. 2007;19(11):115104. doi: 10.1063/1.2784943
  • Ashurst WT, Kerstein A, Kerr R, et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys Fluids. 1987;30(8):2343–2353. doi: 10.1063/1.866513
  • Yeung P, Girimaji S, Pope S. Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets. Combust Flame. 1990;79(3–4):340–365. doi: 10.1016/0010-2180(90)90145-H
  • Chakraborty N, Swaminathan N. Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys Fluids. 2007;19(4):045103.
  • Chakraborty N, Klein M, Swaminathan N. Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc Combust Inst. 2009;32(1):1409–1417. doi: 10.1016/j.proci.2008.06.021
  • Malkeson SP, Chakraborty N. Alignment statistics of active and passive scalar gradients in turbulent stratified flames. Phys Rev E. 2011;83(4):046308. doi: 10.1103/PhysRevE.83.046308
  • Savard B, Blanquart G. Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust Flame. 2015;162(5):2020–2033. doi: 10.1016/j.combustflame.2014.12.020
  • Holzner M, Lüthi B. Laminar superlayer at the turbulence boundary. Phys Rev Lett. 2011;106(13):134503. doi: 10.1103/PhysRevLett.106.134503
  • Watanabe T, Sakai Y, Nagata K, et al. Reactive scalar field near the turbulent/non-turbulent interface in a planar jet with a second-order chemical reaction. Phys Fluids. 2014;26(10):105111.
  • Resnikoff HL, Raymond O. Wavelet analysis: the scalable structure of information. New York: Springer Science & Business Media; 1998.
  • Shete KP, de Bruyn Kops SM. Area of Scalar Isosurfaces inHomogeneous Isotropic Turbulence as a Function of Reynolds and Schmidt Numbers. J. Fluid Mech. 2019.
  • Wacks, Daniel H et al Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Phys Review Fluids. 2016;1(8):083401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.