337
Views
7
CrossRef citations to date
0
Altmetric
Articles

Turbulence structure of boundary layers perturbed by isolated and tandem roughness elements

ORCID Icon &
Pages 17-33 | Received 26 Oct 2019, Accepted 19 Dec 2019, Published online: 04 Jan 2020

References

  • Lin JC, Howard FG, Selby GV. Small submerged vortex generators for turbulent flow separation control. J Spacecr Rockets. 1990;27:503–507. doi: 10.2514/3.26172
  • Habchi C, Lemenand T, Valle DD, et al. Turbulence behavior of artificially generated vorticity. J Turbul. 2010;11:N36. doi: 10.1080/14685248.2010.510841
  • Hamed AM, Pagan-Vazquez A, Khovalyg D, et al. Vortical structures in the near wake of tabs with various geometries. J Fluid Mech. 2017;825:167–188. doi: 10.1017/jfm.2017.384
  • Cao S, Tamura T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill. J Wind Eng Ind Aerod. 2006;94:1–19. doi: 10.1016/j.jweia.2005.10.001
  • Cao S, Tamura T. Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change. J Wind Eng Ind Aerod. 2007;95:679–695. doi: 10.1016/j.jweia.2007.01.002
  • Palmer JA, Mejia-Alvarez R, Best JL, et al. Particle-image velocimetry measurements of flow over interacting barchan dunes. Exp Fluids. 2012;52:809–829. doi: 10.1007/s00348-011-1104-4
  • Tobin N, Hamed AM, Chamorro LP. Fractional flow speed-up from porous windbreaks for enhanced wind-turbine power. Boundary-Layer Meteorol. 2017;163:253–271. doi: 10.1007/s10546-016-0228-8
  • Adaramola MS, Akinlade OG, Sumner D, et al. Turbulent wake of a finite circular cylinder of small aspect ratio. J Fluid Struct. 2006;22:919–928. doi: 10.1016/j.jfluidstructs.2006.04.007
  • Adaramola MS, Sumner D, Bergstrom DJ. Effect of velocity ratio on the streamwise vortex structures in the wake of a stack. J Fluid Struct. 2010;26:1–18. doi: 10.1016/j.jfluidstructs.2009.07.007
  • Ryan MD, Ortiz-Dueñas C, Longmire EK. Effects of simple wall-mounted cylinder arrangements on a turbulent boundary layer. AIAA J. 2011;49:2210–2220. doi: 10.2514/1.J051012
  • Pathikonda G, Christensen KT. Structure of turbulent channel flow perturbed by a wall-mounted cylindrical element. AIAA J. 2014;53:1277–1286. doi: 10.2514/1.J053407
  • Tang Z, Jiang N, Zheng X, et al. Bursting process of large-and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element. Exp Fluids. 2016;57:79. doi: 10.1007/s00348-016-2174-0
  • Heidari M, Balachandar R, Roussinova V, et al. Characteristics of flow past a slender, emergent cylinder in shallow open channels. Phys Fluids. 2017;29:065111. doi: 10.1063/1.4986563
  • Chen Q, Qi M, Zhong Q, et al. Experimental study on the multimodal dynamics of the turbulent horseshoe vortex system around a circular cylinder. Phys Fluids. 2017;29:015106.
  • Kim T, Christensen KT. Flow interactions between streamwise-aligned tandem cylinders in turbulent channel flow. AIAA J. 2017;56:1421–1433. doi: 10.2514/1.J056186
  • Tang Z, Jiang N. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element. Phys Fluids. 2018;30:055103. doi: 10.1063/1.5022670
  • Wang J, Pan C, Zhang Q, et al. Modulating the near-wall velocity fields in wall-bounded turbulence via discrete surface roughness. AIAA J. 2018;1–11.
  • Kumar P, Manelil NP, Tiwari S. Effects of shear intensity and aspect ratio on three-dimensional wake characteristics of flow past surface mounted circular cylinder. Phys Fluids. 2019;31:043602.
  • Hamed AM, Peterlein AM, Randle LV. Turbulent boundary layer perturbation by two wall-mounted cylindrical roughness elements arranged in tandem: effects of spacing and height ratio. Phys Fluids. 2019;31:065110. doi: 10.1063/1.5099493
  • Park CW, Lee SJ. Flow structure around a finite circular cylinder embedded in various atmospheric boundary layers. Fluid Dyn Res. 2002;30:197–215. doi: 10.1016/S0169-5983(02)00037-0
  • Sumner D, Heseltine JL, Dansereau OJP. Wake structure of a finite circular cylinder of small aspect ratio. Exp Fluids. 2004;37:720–730. doi: 10.1007/s00348-004-0862-7
  • Wang HF, Zhou Y, Chan CK, et al. Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake. Phys Fluids. 2006;18:065106.
  • Hain R, Kähler CJ, Michaelis D. Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate. Exp Fluids. 2008;45:715–724. doi: 10.1007/s00348-008-0553-x
  • Sumner D, Reitenbach HK. Wake interference effects for two finite cylinders: a brief review and some new measurements. J Fluid Struct. 2019.
  • Zheng S, Longmire EK. Perturbing vortex packets in a turbulent boundary layer. J Fluid Mech. 2014;748:368–398. doi: 10.1017/jfm.2014.185
  • Tan YM, Longmire EK. Recovery of vortex packet organization in perturbed turbulent boundary layers. Phys Rev Fluids. 2017;2:104602. doi: 10.1103/PhysRevFluids.2.104602
  • Habchi C, Lemenand T, Della Valle D, et al. Alternating mixing tabs in multifunctional heat exchanger-reactor. Chem Engin Process. 2010;49:653–661. doi: 10.1016/j.cep.2009.07.003
  • Wang C, Tang Z, Bristow N, et al. Numerical and experimental study of flow over stages of an offset merger dune interaction. Comput Fluids. 2017;158:72–83. doi: 10.1016/j.compfluid.2016.11.005
  • Bristow NR, Blois G, Best JL, et al. Turbulent flow structure associated with collision between laterally offset, fixed-bed barchan dunes. J Geophys Res. 2018;123:2157–2188. doi: 10.1029/2017JF004553
  • Yang XIA, Sadique J, Mittal R, et al. Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J Fluid Mech. 2016;789:127–165. doi: 10.1017/jfm.2015.687
  • Yang XIA, Meneveau C. Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers. J Turbul. 2016;17:1072–1085. doi: 10.1080/14685248.2016.1215604
  • Sadique J, Yang XIA, Meneveau C, et al. Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: effect of aspect ratio and arrangements. Boundary-Layer Meteorol. 2017;163:203–224. doi: 10.1007/s10546-016-0222-1
  • Wallace JM, Eckelmann H, Brodkey RS. The wall region in turbulent shear flow. J Fluid Mech. 1972;54:39–48. doi: 10.1017/S0022112072000515
  • Lu SS, Willmarth WW. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech. 1973;60:481–511. doi: 10.1017/S0022112073000315
  • Wallace JM. Quadrant analysis in turbulence research: history and evolution. Ann Rev Fluid Mech. 2016;48:131–158. doi: 10.1146/annurev-fluid-122414-034550
  • Adrian RJ. Hairpin vortex organization in wall turbulence. Phys Fluids. 2007;19:041301. doi: 10.1063/1.2717527
  • Flack KA, Schultz MP, Shapiro TA. Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys Fluids. 2005;17:035102. doi: 10.1063/1.1843135
  • Wu Y, Christensen KT. Reynolds-stress enhancement associated with a short fetch of roughness in wall turbulence. AIAA J. 2006;44:3098–3106. doi: 10.2514/1.22357
  • Liu Z, Adrian RJ, Hanratty TJ. Large-scale modes of turbulent channel flow: transport and structure. J Fluid Mech. 2001;448:53–80. doi: 10.1017/S0022112001005808
  • Sirovich L. Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Maths. 1987;45:561–571. doi: 10.1090/qam/910462
  • Lumley JL. Stochastic tools in turbulence; 1970.
  • Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech. 1993;25:539–575. doi: 10.1146/annurev.fl.25.010193.002543
  • Adrian RJ, Christensen KT, Liu Z. Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids. 2000;29:275–290. doi: 10.1007/s003489900087
  • Placidi M, Ganapathisubramani B. Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J Fluid Mech. 2015;782:541–566. doi: 10.1017/jfm.2015.552
  • Placidi M, Ganapathisubramani B. Turbulent flow over large roughness elements: effect of frontal and plan solidity on turbulence statistics and structure. Boundary-Layer Meteorol. 2018;167:99–121. doi: 10.1007/s10546-017-0317-3
  • Hamed AM, Sadowski MJ, Nepf HM, et al. Impact of height heterogeneity on canopy turbulence. J Fluid Mech. 2017;813:1176–1196. doi: 10.1017/jfm.2017.22
  • Sen M, Bhaganagar K, Juttijudata V. Application of proper orthogonal decomposition (POD) to investigate a turbulent boundary layer in a channel with rough walls. J Turbul. 2007;8:41. doi: 10.1080/14685240701615960
  • Brindise MC, Vlachos PP. Proper orthogonal decomposition truncation method for data denoising and order reduction. Exp Fluids. 2017;58:28. doi: 10.1007/s00348-017-2320-3
  • Butcher D, Spencer A. Cross-correlation of POD spatial modes for the separation of stochastic turbulence and coherent structures. Fluids. 2019;4:134. doi: 10.3390/fluids4030134
  • Perret L, Rivet C. Dynamics of a turbulent boundary layer over cubical roughness elements: insight from PIV measurements and POD analysis. Proceedings of Eighth International Symposium on Turbulence and Shear Flow Phenomena; Poitiers; 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.