344
Views
11
CrossRef citations to date
0
Altmetric
Articles

Direct numerical simulations of forced homogeneous isotropic turbulence in a dense gas

, &
Pages 186-208 | Received 01 Oct 2019, Accepted 26 Feb 2020, Published online: 19 Mar 2020

References

  • Bethe HA. On the theory of shock waves for an arbitrary equation of state. In: Johnson JN, Chéret R, editors. Classic papers in shock compression science. Springer, New-York; 1998:421–495.
  • Zeldovich J. On the propagation of shock waves in gases with a reversible chemical reaction. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki. 1946;16(4):365–368.
  • Thompson PA, Lambrakis K. Negative shock waves. J Fluid Mech. 1973;60(1):187–208.
  • Cramer M, Kluwick A. On the propagation of waves exhibiting both positive and negative nonlinearity. J Fluid Mech. 1984;142:9–37.
  • Durá Galiana FJ, Wheeler AP, Ong J. A study of trailing-edge losses in organic rankine cycle turbines. J Turbomach. 2016;138(12):121003.
  • Durá Galiana FJ, Wheeler AP, Ong J. The effect of dense gas dynamics on loss in ORC transonic turbines. J Phys Conf Ser. 2017;821(1):012021.
  • Breuer M, Jovičić N, Mazaev K. Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence. Int J Numer Methods Fluids. 2003;41(4):357–388.
  • Giauque A, Corre C, Menghetti M. Direct numerical simulations of homogeneous isotropic turbulence in a dense gas. J Phys Conf Ser. 2017;821(1):012017.
  • Sciacovelli L, Cinnella P, Content C, et al. Dense gas effects in inviscid homogeneous isotropic turbulence. J Fluid Mech. 2016;800:140–179.
  • Fergason S, Ho T, Argrow BM, et al. Theory for producing a single-phase rarefaction shock wave in a shock tube. J Fluid Mech. 2001;445:37–54.
  • Costello MG, Flynn RM, Owens JG. Fluoroethers and fluoroamines. In: Othmer K, Kirk RE, editors. Encyclopedia of chemical technology. John Wiley & Sons, New-York; 2004.
  • Cramer MS. Negative nonlinearity in selected fluorocarbons. Phys Fluids A Fluid Dyn. 1989;1(11):1894–1897.
  • Colonna P, Guardone A. Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model. Phys Fluids. 2006;18(5):056101.
  • Martin JJ, Hou Yc. Development of an equation of state for gases. AIChE J. 1955;2(4):142–151.
  • Chung TH, Ajlan M, Lee LL, et al. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind Engin Chem Res. 1988;27(4):671–679.
  • Sutherland W. LII. The viscosity of gases and molecular force. Lond Edinburgh Dublin Philos Mag J Sci. 1893;36(223):507–531.
  • Martin JJ, Kapoor RM, De Nevers N. An improved equation of state for gases. AIChE J. 1959;5(2):159–160.
  • Guardone A, Argrow BM. Nonclassical gasdynamic region of selected fluorocarbons. Phys Fluids. 2005;17(11):1–17.
  • Schönfeld T, Rudgyard M. Steady and unsteady flow simulations using the hybrid flow solver AVBP. AIAA J. 1999 nov;37(11):1378–1385.
  • Colin O, Rudgyard M. Development of high-order Taylor–Galerkin schemes for LES. J Comput Phys. 2000 Aug;162(2):338–371.
  • Staffelbach G, Gicquel L, Boudier G, et al. Large Eddy simulation of self excited azimuthal modes in annular combustors. Proc Combustion Inst. 2009;32(2):2909–2916.
  • Gicquel LLYM, Staffelbach GG, Poinsot TT. Large Eddy simulations of gaseous flames in gas turbine combustion chambers. Prog Energy Combust Sci. 2012 Dec;38(6):783–794.
  • Giauque A, Selle L, Gicquel L, et al. System identification of a large-scale swirled partially premixed combustor using LES and measurements. J Turbulence. 2005 Jan;6(21):N21.
  • Singh A, Chatterjee A. Numerical prediction of supersonic jet screech frequency. Shock Waves. 2007 nov;17(4):263–272.
  • Cook AW, Cabot WH. A high-wavenumber viscosity for high-resolution numerical methods. J Comput Phys. 2004 apr;195(2):594–601.
  • Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research. Annu Rev Fluid Mech. 1998;30(1):539–578.
  • Lundgren TS. Linearly forced isotropic turbulence. Ann Res Briefs. 2003;1(2):461–473.
  • Rosales C, Meneveau C. Linear forcing in numerical simulations of isotropic turbulence: Physical space Implementations and convergence properties. Phys Fluids. 2005;17(9):1–8.
  • Petersen MR, Livescu D. Forcing for statistically stationary compressible isotropic turbulence. Physics of Fluids. 2010;22(11):116101.
  • Kritsuk AG, Norman ML, Padoan P, et al. The statistics of supersonic isothermal turbulence. Astrophys J. 2007;665(1):416.
  • Samtaney R, Pullin DI, Kosović B, et al. Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys Fluids. 2001;13(5):1415–1430.
  • Aluie H. Scale locality and the inertial range in compressible turbulence. Bull Amer Phys Soc. 2012;57(17).
  • Aluie H, Li S, Li H. The conservative cascade of kinetic energy in compressible turbulence. Astrophys J Lett. 2012;751(2):L29 (6pp).
  • Aluie H, Li S, Li H. Scale decomposition in compressible turbulence. Physica D Nonlinear Phenomena. 2013;247(1):54–65.
  • Poinsot TJ, Lele SK. Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys. 1992;101(1):104–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.