148
Views
0
CrossRef citations to date
0
Altmetric
Articles

Three-dimensional inert and reactive shock-interface interactions: statistical flow characterisations

ORCID Icon &
Pages 209-233 | Received 21 Oct 2019, Accepted 25 Mar 2020, Published online: 21 Apr 2020

References

  • Jha SW, Maguire K, Sullivan M. Observational properties of thermonuclear supernovae. Nat Astron. 2019;3:706–716. doi: 10.1038/s41550-019-0858-0
  • Seitenzahl IR, Ghavamian P, Laming JM, et al. Optical tomography of chemical elements synthesized in type Ia supernovae. Phys Rev Lett. 2019;123:041101. doi: 10.1103/PhysRevLett.123.041101
  • Blinnikov SI, Ilkaev RI, Mochalov MA, et al. Dynamics of supernova bounce in laboratory. Phys. Rev E. 2019;99:033102. doi: 10.1103/PhysRevE.99.033102
  • Perkins LJ, Betti R, LaFortune KN, et al. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility. Phys Rev Lett. 2009;103:045004. doi: 10.1103/PhysRevLett.103.045004
  • Khokhlov AM, Oran ES. Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames. Combust Flame. 1999;117:323–339. doi: 10.1016/S0010-2180(98)00076-5
  • Kessler DA, Gamezo VN, Oran ES. Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems. Combust Flame. 2010;157:2063–2077. doi: 10.1016/j.combustflame.2010.04.011
  • Xiao H, Oran ES. Shock focusing and detonation initiation at a flame front. Combust Flame. 2019;203:397–406. doi: 10.1016/j.combustflame.2019.02.012
  • Dounia O, Vermorel O, Misdariis A, et al. Influence of kinetics on DDT simulations. Combust Flame. 2019;200:1–14. doi: 10.1016/j.combustflame.2018.11.009
  • Martin B. The Richtmyer-Meshkov instability. Annu Rev Fluid Mech. 2002;34:445–468. doi: 10.1146/annurev.fluid.34.090101.162238
  • Herrmann M, Moin P, Abarzhi SI. Nonlinear evolution of the Richtmyer–Meshkov instability. J Fluid Mech. 2008;612:311–338. doi: 10.1017/S0022112008002905
  • Holmes RL, Dimonte G, Fryxell B, et al. Richtmyer–Meshkov instability growth: Experiment, simulation and theory. J Fluid Mech. 1999;389:55–79. doi: 10.1017/S0022112099004838
  • Luo X, Li M, Ding J, et al. Nonlinear behaviour of convergent Richtmyer–Meshkov instability. J Fluid Mech. 2019;877:130–141. doi: 10.1017/jfm.2019.610
  • Latini M, Schilling O, Don WS. Physics of reshock and mixing in the single-mode Richtmyer-Meshkov instability. Phys Rev E. 2007;76:026319. doi: 10.1103/PhysRevE.76.026319
  • Latini M, Schilling O, Don WS. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability. J Comput Phys. 2007;221:805–836. doi: 10.1016/j.jcp.2006.06.051
  • Weber CR, Haehn NS, Oakley JG, et al. An experimental investigation of the turbulent mixing transition in the Richtmyer–Meshkov instability. J Fluid Mech. 2014;748:457–487. doi: 10.1017/jfm.2014.188
  • Thornber B, Drikakis D, Youngs DL, et al. The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability. J Fluid Mech. 2010;654:99–139. doi: 10.1017/S0022112010000492
  • Song Z, Aimad E, Zakaria B, et al. Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames. Combust Flame. 2018;198:436–454. doi: 10.1016/j.combustflame.2018.10.002
  • Praturi DS, Girimaji SS. Effect of pressure-dilatation on energy spectrum evolution in compressible turbulence. Phys Fluids. 2019;31:055114. doi: 10.1063/1.5093929
  • Li HF, He ZW, Zhang YS, et al. On the role of rarefaction/compression waves in Richtmyer-Meshkov instability with reshock. Phys Fluids. 2019;31:054102. doi: 10.1063/1.5083796
  • Diegelmann F, Hickel S, Adams NA. Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction. Combust Flame. 2016;174:85–99. doi: 10.1016/j.combustflame.2016.09.014
  • Diegelmann F, Hickel S, Adams NA. Three-dimensional reacting shock–bubble interaction. Combust Flame. 2017;181:300–314. doi: 10.1016/j.combustflame.2017.03.026
  • Felix D, Stefan H, Nikolaus AA. Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction. Combust Flame. 2016;174:85–99. doi: 10.1016/j.combustflame.2016.09.014
  • Peters N. Turbulent combustion. Cambridge: Cambridge University Press; 2000.
  • Jiang H, Dong G, Chen X, et al. A parameterization of the Richtmyer-Meshkov instability on a premixed flame interface induced by the successive passages of shock waves. Combust Flame. 2016;169:229–241. doi: 10.1016/j.combustflame.2016.04.021
  • Kessler DA, Gamezo VN, Oran ES. Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems. Combust Flame. 2010;157:2063–2077. doi: 10.1016/j.combustflame.2010.04.011
  • Oran ES, Gamezo VN. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust Flame. 2007;148:4–47. doi: 10.1016/j.combustflame.2006.07.010
  • Kee RJ, Grcar JF, Smooke MD, et al. Premix: a fortran program for modeling steady laminar one-dimensional premixed flames. Livemore (CA): Sandia National Laboratories; 1985. (Sandia Rep; no. SAND85-8240).
  • GRI_Mech [Internet]. Berkeley (CA): The Gas Research Institute; [cited 2020 Feb 28]. Available from: http://combustion.berkeley.edu.cn/gri-mech/ version30/text30.html.
  • Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. J Comput Phys. 1996;126:202–228. doi: 10.1006/jcph.1996.0130
  • Balsara DS, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys. 2000;160:405–452. doi: 10.1006/jcph.2000.6443
  • Latini M, Schilling O, Don WS. High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: comparison to experimental data and to amplitude growth model predictions. Phys Fluids. 2007;19:024104. doi: 10.1063/1.2472508
  • Schilling O, Latini M. High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on nitial conditions, and comparisons to experimental data. Acta Math Sci. 2010;30B(2):595–620. doi: 10.1016/S0252-9602(10)60064-1
  • Kokkinakis IW, Drikakis D. Implicit large eddy simulation of weakly-compressible turbulent channel flow. Comput Methods Appl Mech Eng. 2015;287:229–261. doi: 10.1016/j.cma.2015.01.016
  • Marquina A, Mulet P. A flux-split algorithm applied to conservative models for multicomponent compressible flows. J Comput Phys. 2003;185:120–138. doi: 10.1016/S0021-9991(02)00050-5
  • Fu DX, Ma YW, Li XL, et al. Direct simulation of compressible turbulence. Beijing: Science Press; 2010.
  • Pablo D, David CM. Numerical study of the decay of enstrophy in a two-dimensional Navier–stokes fluid in the limit of very small viscosities. Phys Fluids. 2005;17:035114. doi: 10.1063/1.1864134
  • Suman S, Girimaji SS. Velocity gradient invariants and local flow-field topology in compressible turbulence. J Turbul. 2010;11:1468–5248. doi: 10.1080/14685241003604751

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.