280
Views
7
CrossRef citations to date
0
Altmetric
Articles

Comparison between temporal and spatial direct numerical simulations for bypass transition flows

&
Pages 311-354 | Received 06 Oct 2019, Accepted 13 May 2020, Published online: 13 Jul 2020

References

  • Morkovin MV. On the many faces of transition. Viscous Drag Reduction. 1969. p. 1–31.
  • Spalart PR, Venkatakrishnan V. On the role and challenges of CFD in the aerospace industry. Aeronaut J. 2016;120:209–232. doi: 10.1017/aer.2015.10
  • Wu X, Durbin PA. Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage. J Fluid Mech. 2001;446:199–228. doi: 10.1017/S0022112001005717
  • Jacobs RG, Durbin PA. Simulations of bypass transition. J Fluid Mech. 2001;428:185–212. doi: 10.1017/S0022112000002469
  • Zaki TA, Durbin PA. Mode interaction and the bypass transition route to transition. J Fluid Mech. 2005;531:85–111. doi: 10.1017/S0022112005003800
  • Schlatter P, Brandt L, de Lange HC, et al. On streak breakdown in bypass transition. Phys Fluids. 2008;20:101505. doi: 10.1063/1.3005836
  • Wu X, Moin P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J Fluid Mech. 2009;630:5–41. doi: 10.1017/S0022112009006624
  • Schlatter P, Örlü R, Li Q, et al. Turbulent boundary layers up to Re= 2500 studied through simulation and experiment. Phys Fluids. 2009;21:51702. doi: 10.1063/1.3139294
  • Duan L. Direct numerical simulation of turbulence in a swept-wing boundary layer. J Fluid Mech. 2014;630:1–12.
  • Bose R, Durbin PA. Helical modes in boundary layer transition. Phys Rev Fluids. 2016;1:073602. doi: 10.1103/PhysRevFluids.1.073602
  • Wu X, Moin P, Wallace JM, et al. Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. P Natl A Sci. 2017;114:E5292–E5299. doi: 10.1073/pnas.1704671114
  • Kozul M, Chung D, Monty JP. Direct numerical simulation of the incompressible temporally developing turbulent boundary layer. J Fluid Mech. 2016;796:437–472. doi: 10.1017/jfm.2016.207
  • Jimenez J, Hoyas S, Simens MP, et al. Turbulent boundary layers and channels at moderate Reynolds numbers. J Fluid Mech. 2010;657:335–360. doi: 10.1017/S0022112010001370
  • Bobke A, Orlu R, Schlatter P. Simulations of turbulent asymptotic suction boundary layers. J Turbul. 2016;17:157–180. doi: 10.1080/14685248.2015.1083574
  • Angelis VD, De Angelis V, Lombardi P, et al. Direct numerical simulation of turbulent flow over a wavy wall. Phys Fluids. 1994-1997;9:2429–2442. doi: 10.1063/1.869363
  • Scotti A, Piomelli U. Numerical simulation of pulsating turbulent channel flow. Phys Fluids. 2001;13:1367–1384. doi: 10.1063/1.1359766
  • Nagarajan S, Lele SK, Ferziger JH. Leading-edge effects in bypass transition. J Fluid Mech. 2007;572:471–504. doi: 10.1017/S0022112006001893
  • Ovchinnikov V, Choudhari MM, Piomelli U. Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J Fluid Mech. 2008;613:135–169. doi: 10.1017/S0022112008003017
  • Bhushan S, Warsi ZU, Walters KD. Modeling of energy backscatter via an algebraic subgrid-stress model. AIAA J. 2006;44:837–847. doi: 10.2514/1.17394
  • Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech. 1987;177:133–166. doi: 10.1017/S0022112087000892
  • Bhushan S, Walters DK. A dynamic hybrid Reynolds-averaged Navier Stokes - large eddy simulation modeling framework. Phys Fluids. 2012;24:1–7. doi: 10.1063/1.3676737
  • Spalart PR. Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech. 1988;187:61–98. doi: 10.1017/S0022112088000345
  • Guarini SE, Moser RD, Shariff K, et al. Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J Fluid Mech. 2000;414:1–33. doi: 10.1017/S0022112000008466
  • Maeder T, Adams NA, Kleiser L. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J Fluid Mech. 2001;429:187–216. doi: 10.1017/S0022112000002718
  • Wray A, Hussaini MY. Numerical experiments in boundary-layer stability. P Roy Soc London. A. Math Phys Sci. 1984;392:373–389.
  • Piomelli U, Zang TA, Speziale CG, et al. On the large-eddy simulation of transitional wall-bounded flows. Phys Fluids A: Fluid Dy. 1990;2:257–265. doi: 10.1063/1.857774
  • Rogers MM, Moser RD, Buell JC. A direct comparison of spatially and temporally evolving mixing layers. Bull. Am. Phys. Soc. 1990;35:2294.
  • Akhavan R, Ansari A, Kang S, et al. Subgrid-scale interactions in a numerically simulated planar turbulent jet and implications for modelling. J Fluid Mech. 2000;408:83–120. doi: 10.1017/S0022112099007582
  • Ostoich CM, Bodony DJ, Geubelle PH. Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation. Phys Fluids. 2013;25:110806. doi: 10.1063/1.4819350
  • He S, Seddighi M. Turbulence in transient channel flow. J Fluid Mech. 2013;715:60–102. doi: 10.1017/jfm.2012.498
  • Roach PE, Brierley DH. The influence of a turbulent freestream on zero pressure gradient transitional boundary layer development. part 1: test cases T3A and T3B. In: Pironneau O, Rodi W, Ryhming IL, editors. Numerical simulation of unsteady flows and transition to turbulence. Cambridge, UK: Cambridge University Press; 1990. p. 319–347.
  • Mathur A, Gorji S, He S, et al. Temporal acceleration of a turbulent channel flow. J Fluid Mech. 2018;835:471–490. doi: 10.1017/jfm.2017.753
  • Zhang X, Watanabe T, Nagata K. Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers. Phys Rev Fluids. 2018;3:094605. doi: 10.1103/PhysRevFluids.3.094605
  • Pope SB. Turbulent flows. Cambridge (MA): Cambridge University Press; 2000.
  • White FM, Corfield I. Viscous fluid flow. New York: McGraw-Hill; 2006.
  • Warsi ZU. Fluid dynamics: theoretical and computational approaches. Boca Raton, Florida, USA: CRC press; 2005.
  • Brandt L, Schlatter P, Henningson DS. Transition in boundary layers subject to free-stream turbulence. Journal of Fluid Mechanics. 2004;517:167–198. doi: 10.1017/S0022112004000941
  • Tsukahara T, Seki Y, Kawamura H, et al. DNS of turbulent channel flow at very low Reynolds numbers. Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena, Williamsburg, VA; 2005. p. 935–940.
  • Taylor GI. Production and dissipation of vorticity in a turbulent fluid. Proc Roy Soc London. Math Phys Sci. 1938;164:15–23.
  • Piomelli U, Balint J-L, Wallace JM. On the validity of Taylor’s hypothesis for wall-bounded flows. Phys Fluids A: Fluid Dy. 1989;1:609–611. doi: 10.1063/1.857432
  • Del Álamo JC, Jiménez J. Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech. 2009;640:5–26. doi: 10.1017/S0022112009991029
  • Bhushan S, Walters KD, Muthu S, et al. Identification of bypass transition onset markers using direct numerical simulation. J Fluids Eng. 2018;140(11):111107. doi: 10.1115/1.4040299
  • Bhushan S, Muthu S. Parallel performance assessment of a pseudo-spectral solver for transition and turbulent boundary layer flows. Eng Appl Comput Fluid Mech. 2019;13:763–781.
  • Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to Reτ= 590. Phys Fluids. 1999;11:943–945. doi: 10.1063/1.869966
  • Bhushan S, Walters DK. Development of parallel pseudo-spectral solver using influence matrix method and application to boundary layer transition. Eng Appl Comput Fluid Mech. 2014;8:158–177.
  • Rogallo RS. Numerical experiments in homogeneous turbulence. NASA Tech Memo. 1981;81315:1–91.
  • Alfonsi G. On direct numerical simulation of turbulent flows. Appl Mech Rev. 2011;64, 0220802. doi: 10.1115/1.4005282
  • Rai MM, Moin P. Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J Comput Phys. 1993;109(2):169–192. doi: 10.1006/jcph.1993.1210
  • Emory M, Iaccarino G. Visualizing turbulence anisotropy in the spatial domain with componentality contours center of turbulence research. Annu Res Briefs. 2014: 123–138.
  • Choi H, Moin P. Effect of the computational time step on numerical solutions of turbulent flow. J Comput Phys. 1994;113:1–4. doi: 10.1006/jcph.1994.1112
  • Andersson P, Berggren M, Henningson DS. Optimal disturbances and bypass transition in boundary layers. Phys Fluids. 1999;11:134–150. doi: 10.1063/1.869908
  • Westin KJA, Boiko AV, Klingmann BGB, et al. Experiments in a boundary layer subjected to free stream turbulence. part 1. boundary layer structure and receptivity. J Fluid Mech. 1994;281:193–218. doi: 10.1017/S0022112094003083
  • Praisner TJ, Clark JP. Predicting transition in turbomachinery—part I: A review and new model development. J Turbomach. 2007;129:1. doi: 10.1115/1.2366513
  • Mayle RE, Schulz A. The path to predicting bypass transition. Volume 1: turbomachinery. 1996;119:V001T01A065.
  • Matsubara M, Alfredsson PH. Disturbance growth in boundary layers subjected to free-stream turbulence. J Fluid Mech. 2001;430:149–168. doi: 10.1017/S0022112000002810
  • Jonáš P, Mazur O, Uruba V. On the receptivity of the by-pass transition to the length scale of the outer stream turbulence. Eur J Mech-B/Fluids. 2000;19:707–722. doi: 10.1016/S0997-7546(00)01094-3
  • Muthu S, Bhushan S, Walters DK. Evaluation of pressure-strain correlation as a basis for development of a physics-based transition onset marker. fluids engineering division summer meeting. American Society of Mechanical Engineers; 2019. p. V002T02A059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.