323
Views
6
CrossRef citations to date
0
Altmetric
Articles

On the importance of the drag coefficient modelling in the double averaged Navier-Stokes equations for prediction of the roughness effects

ORCID Icon &
Pages 463-482 | Received 24 Apr 2020, Accepted 04 Aug 2020, Published online: 09 Sep 2020

References

  • Bons J, Taylor R, McClain S, et al. The many faces of turbine surface roughness. J Turbomach. 2001 Oct;123:739–748. doi: 10.1115/1.1400115
  • Bons J. A review of surface roughness effects in gas turbines. J Turbomach. 2010 Apr;132:021004:1–021004:16. doi: 10.1115/1.3066315
  • Dukhan N, Masiulaniec K, De Witt K, et al. Experimental heat transfer coefficients from ice-roughened surfaces for air deicing design. Journal of Aircraft. 1999 Nov–Dec;36(6):948–956. doi: 10.2514/2.2556
  • Hanson D, Kinzel M. Application of the discrete element method to ice accretion geometries. In: 46th AIAA Fluid Dynamics Conference; Jun. American Institute of Aeronautics and Astronautics; 2016. doi:10.2514/6.2016-4109.
  • McClain S, Tinŏ P, Kreeger R. Ice shape characterization using self-organizing maps. J Aircraft. 2011 Mar–Apr;48(2):724–729. doi: 10.2514/1.C031209
  • Schultz MP. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 2007;23(5):331–341. doi: 10.1080/08927010701461974
  • Raupach M. Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorol. 1994;71(1–2):211–216. doi: 10.1007/BF00709229
  • Anderson W, Meneveau C. Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces. J Fluid Mech. 2011;679:288–314. doi: 10.1017/jfm.2011.137
  • Orlandi P, Leonardi S. DNS of turbulent channel flows with two-and three-dimensional roughness. Journal of Turbulence. 2006;(7):N73. doi: 10.1080/14685240600827526
  • Cardillo J, Araya G, Newman J, et al. DNS of a turbulent boundary layer with surface roughness. J Fluid Mech. 2013;729:603–637. doi: 10.1017/jfm.2013.326
  • Chan L, MacDonald M, Chung D, et al. A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J Fluid Mech. 2015;771:743–777. doi: 10.1017/jfm.2015.172
  • Forooghi P, Stroh A, Schlatter P, et al. Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: A systematic study on the effect of surface morphology on turbulence. Phys Rev Fluids. 2018;3(4):044605. doi: 10.1103/PhysRevFluids.3.044605
  • Blocken B, Stathopoulos T, Carmeliet J. Cfd simulation of the atmospheric boundary layer: wall function problems. Atmosp Environ. 2007;41(2):238–252. doi: 10.1016/j.atmosenv.2006.08.019
  • Suga K, Craft T, Iacovides H. An analytical wall-function for turbulent flows and heat transfer over rough walls. Inter J Heat Fluid Flows. 2006 Oct;27(5):852–866. doi: 10.1016/j.ijheatfluidflow.2006.03.011
  • Chedevergne F. Analytical wall function including roughness corrections. Inter J Heat Fluid Flow. 2018 oct;73:258–269. doi: 10.1016/j.ijheatfluidflow.2018.08.001
  • Aupoix B, Spalart P. Extensions of the spalart–allmaras turbulence model to account for wall roughness. Inter J Heat Fluid Flow. 2003;24(4):454–462. doi: 10.1016/S0142-727X(03)00043-2
  • Aupoix B. Roughness corrections for the k–ω shear stress transport model: status and proposals. J Fluids Engin. 2014 Sep;137(2). doi: 10.1115/1.4028122.
  • Nikuradse J. Strömungsgesetze in rauhen Rohren. Berlin: VDI-Forschungsheft; 1933; 361.
  • Schlichting H. Experimentelle Untersuchungen zum Rauhigkeitsproblem. Ingenieur Archiv. 1936 Feb;7(1):1–34. doi: 10.1007/BF02084166
  • Robertson J. Surface resistance as a function of the concentration and size of roughness elements [dissertation]. State University of Iowa; 1961
  • Finson M. A Reynolds stress model for boundary layer transition with application to rough surfaces. Wakefield (MA): Physical Sciences Inc.; 1975. Interim scientific report.
  • Finson M, Clarke A. The effect of surface roughness character on turbulent reentry heating [Aiaa paper 80–1459 15th thermophysics conference, snowmass, colorado]; 1980
  • Finson M. A model for rough wall turbulent heating and skin friction [Aiaa paper 82-0199 20th aerospace science meeting, orlando, florida]; 1982.
  • Christoph G, Pletcher R. Predictions of rough-wall skin friction and heat transfer. AIAA J. 1983 April;21(4):509–515. doi: 10.2514/3.8107
  • Christoph G, Fiore A. Experimental and computational study of roughness effects at M = 6 [Aiaa paper 84-1681 17th fluid dynamics, plasma dynamics and laser conference, snowmass, colorado]; 1984.
  • Khan Z. An analytical study of the effects of surface roughness on a compressible turbulent boundary layer [master's thesis]. Wright-Patterson Air Force Base, Ohio: Air Force Institute of Technology; 1983.
  • Bishnoi P. Computation of skin friction and heat transfer with inclusion of stagnation heating of roughness elements for turbulent boundary layer flows [Aiaa paper 88-0175 26th aerospace sciences meeting, reno, nevada]; 1988.
  • Lin T, Bywater R. Turbulence models for high-speed, rough-wall boundary layers. AIAA J. 1982 March;20(3):325–333. doi: 10.2514/3.51077
  • Żukauskas A. Heat transfer from tubes in crossflow. Hartnett JP and Irvine TF, editors, 1972. p. 93–160. (Advances in Heat Transfer; Vol. 8).
  • Taylor R, Coleman H, Hodge B. Prediction of turbulent rough-wall skin friction using a discrete element approach. J Fluids Eng. 1985 June;107:251–257. doi: 10.1115/1.3242469
  • Coleman H, Hodge B, Taylor R. A re-evaluation of Schlichting's surface roughness experiment. J Fluids Eng. 1984 Mar;106:60–65. doi: 10.1115/1.3242406
  • Taylor R, Scaggs W, Coleman H. Measurement and prediction of the effects of nonuniform surface roughness on turbulent flow friction coefficients. J Fluids Eng. 1988 Dec;110:380–384. doi: 10.1115/1.3243567
  • Bons J, McClain S. The effect of real turbine roughness with pressure gradient and heat transfer. J Turbomach. 2004 July;126:385–394. doi: 10.1115/1.1738120
  • McClain S, Hodge B, Bons J. Predicting skin friction and heat transfer for turbulent flow over real gas turbine surface roughness using the discrete element method. J Turbomach. 2004 April;126:259–267. doi: 10.1115/1.1740779
  • McClain S, Collins S, Hodge B, et al. The importance of the mean elevation in predicting skin friction for flow over closely packed surface roughness. J Fluids Eng. 2006 May;128:579–586. doi: 10.1115/1.2175164
  • Aupoix B. Revisiting the discrete element method for predictions of flows over rough surfaces. J Fluids Eng. 2016 March; 00:31205. doi: 10.1115/1.4031558
  • Whitaker S. Flows in porous media I: a theoretical derivation of Darcy's law. Transp Porous Media. 1986;1:3–25. doi: 10.1007/BF01036523
  • Whitaker S. The method of volume averaging. Kluwer Academic; 1999. (Theory and applications of transport in porous media. Vol. 13).
  • Hanson DR, Kinzel MP, McClain ST. Validation of the discrete element roughness method for predicting heat transfer on rough surfaces. Int J Heat Mass Transf. 2019 Jun;136:1217–1232. doi: 10.1016/j.ijheatmasstransfer.2019.03.062.
  • Kuwata Y, Suga K, Kawaguchi Y. An extension of the second moment closure model for turbulent flows over macro rough walls. Int J Heat Fluid Flow. 2019 Jun;77:186–201. doi: 10.1016/j.ijheatfluidflow.2019.04.003.
  • Tarada F. Heat transfer to rough turbine blading [dissertation]. University of Sussex; 1987
  • Stripf M, Schulz A, Bauer HJ. Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils. J Turbomach. 2008 Feb;130(2). doi: 10.1115/1.2750675.
  • Stripf M, Schulz A, Bauer H. et al extended models for transitional rough wall boundary layers with heat transfer – Part I: model formulations. J Turbomach. 2009 July;131:031016:1–031016:10.
  • Stripf M, Schulz A, Bauer H. et al extended models for transitional rough wall boundary layers with heat transfer – Part II: model validation and benchmarking. J Turbomach. 2009 July;131:031017:1–031017:11.
  • Kuwata Y, Kawaguchi Y. Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness. Inter J Heat Fluid Flow. 2019 Jun;77:1–18. doi: 10.1016/j.ijheatfluidflow.2019.02.009.
  • Forooghi P, Stripf M, Frohnapfel B. A systematic study of turbulent heat transfer over rough walls. Int J Heat Mass Transf. 2018 dec;127:1157–1168. doi: 10.1016/j.ijheatmasstransfer.2018.08.013
  • Whitaker S. The forchheimer equation: A theoretical development. Transp Porous Media. 1996;25:27–61. doi: 10.1007/BF00141261
  • Jelly TO, Busse A. Reynolds number dependence of reynolds and dispersive stresses in turbulent channel flow past irregular near-gaussian roughness. Inter J Heat Fluid Flow. 2019 Dec;80:108485. doi: 10.1016/j.ijheatfluidflow.2019.108485.
  • Kuwata Y, Kawaguchi Y. Direct numerical simulation of turbulence over systematically varied irregular rough surfaces. J Fluid Mech. 2019 Jan;862:781–815. doi: 10.1017/jfm.2018.953.
  • Forooghi P, Stroh A, Magagnato F, et al. Toward a universal roughness correlation. J Fluids Eng. 2017 aug;139(12):121201. doi: 10.1115/1.4037280
  • Taylor R, Coleman H, Hodge B. Prediction of heat transfer in turbulent flow over rough surfaces. J Heat Transfer. 1989 May;111:568–572. doi: 10.1115/1.3250716
  • Hanson D. Computational investigation of convective heat transfer on ice-roughened aerodynamic surfaces [dissertation]. The Pennsylvania State University: Aerospace Engineering; 2017.
  • Forooghi P, Weidenlener A, Magagnato F, et al. DNS of momentum and heat transfer over rough surfaces based on realistic combustion chamber deposit geometries. Inter J Heat Fluid Flow. 2018 feb;69:83–94. doi: 10.1016/j.ijheatfluidflow.2017.12.002
  • Chevalier M, Schlatter P, Lundbladh A, et al. Simson–a pseudo-spectral solver for incompressible boundary layer flow. 2007;Tech. Report no. TRITA-MEK 2007:07
  • Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow boundary with an external force field. J Comput Phys. 1993;105(2):354–366. doi: 10.1006/jcph.1993.1081
  • Forooghi P, Frohnapfel B, Magagnato F, et al. A modified parametric forcing approach for modelling of roughness. Inter J Heat Fluid Flow. 2018 jun;71:200–209. doi: 10.1016/j.ijheatfluidflow.2018.03.019
  • Antonialli LA, Silveira-Neto A. Theoretical study of fully developed turbulent flow in a channel, using prandtl's mixing length model. J Appl Math Phys. 2018;06(04):677–692. Available from: https://doi.org/10.4236/jamp.2018.64061.
  • Raupach M, Shaw R. Averaging procedures for flow within vegetation canopies. Boundary Layer Meteorol. 1982;22:79–90. doi: 10.1007/BF00128057
  • Squire D, Morrill-Winter C, Hutchins N, et al. Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers. J Fluid Mech. 2016;795:210–240. doi: 10.1017/jfm.2016.196
  • Jackson P. On the displacement height in the logarithmic velocity profile. J Fluid Mech. 1981;111:15–25. doi: 10.1017/S0022112081002279
  • Charru F, Andreotti B, Claudin P. Sand ripples and dunes. Ann Rev Fluid Mech. 2013 Jan;45(1):469–493. Available from: https://doi.org/10.1146/annurev-fluid-011212-140806.
  • Claudin P, Durán O, Andreotti B. Dissolution instability and roughening transition. J Fluid Mech. 2017 Oct;832. Available from: https://doi.org/10.1017/jfm.2017.711.
  • Schlichting H. Experimental investigation of the problem of surface roughness. Washington: NACA; 1937. Technical Memorandum 823.
  • Perry A, Schofield W, Joubert P. Rough wall turbulent boundary layers. J Fluid Mech. 1969;37:383. doi: 10.1017/S0022112069000619

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.