169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Direct numerical simulation study on the mechanisms of the magnetic field influencing the turbulence in compressible magnetohydrodynamic flow

, , , , &
Pages 675-703 | Received 27 Jun 2020, Accepted 25 Oct 2020, Published online: 16 Nov 2020

References

  • Knaepen B, Moreau R. Magnetohydrodynamic turbulence at low magnetic Reynolds number. Annu Rev Fluid Mech. 2008;40:25–45.
  • Gurijanov EP, Harsha PT. AJAX: new directions in hypersonic technology. Space Plane and Hypersonic Systems and Technology Conference; 1996 Nov 18-22; Norfolk, VA. Reston(VA): AIAA; 1997.
  • Li YW, Zhang BL, Li YH, et al. Cí liú t dòng lì xué zài háng kōng gōng chéng zhōng de yìng yòng yŭ zhn wàng [Applications and prospects of magnetohydrodynamics in aeronautical engineering]. Adv Mech. 2017;47:452–502.
  • Kenjereš S. On modeling and eddy-resolving simulations of flow, turbulence, mixing and heat transfer of electrically conducting and magnetizing fluids: a review. Int J Heat Fluid Flow. 2018;73:270–297.
  • Kuranov AL, Sheikin EG. Magnetohydrodynamic control on hypersonic aircraft under “AJAX” concept. J Spacecraft Rockets. 2003;40(2):174–182.
  • Park C, Bogdanoff DW, Mehta UB. Theoretical performance of a magnetohydrodynamic-bypass scramjet engine with nonequilibrium ionization. J Propul Power. 2003;19(4):529–537.
  • Gaitonde DV. Magnetohydrodynamic energy-bypass procedure in a three-dimensional scramjet. J Propul Power. 2006;22(3):498–510.
  • Kayukawa N. New fossil power systems and the role of open-cycle magnetohydrodynamics generators. J Propul Power. 2002;18(4):871–878.
  • Takai Y, Naganuma Y, Takayanagi S, et al. Study on pulsed linear MHD accelerator using model rocket engine. 50th AIAA Aerospace Sciences Meeting; 2012 Jan 9–12; Nashville, TN. Reston(VA): AIAA; 2002.
  • Romig MF. The influence of electric and magnetic fields on heat transfer to electrically conducting fluids. Amsterdam: Elsevier Ltd; 1964. p. 267-354
  • Shneider MN, Macheret SO, Miles RB. Analysis of magnetohydrodynamic control of scramjet inlets. AIAA J. 2004;42(11):2303–2310.
  • Wang J, Li YH, Xing F. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow. J Appl Phys. 2009;106:073307.
  • Tian ZY, Zhang KP, Pan S, et al. Cí liú t dòng lì xué xié jī bō kòng zhì shù zhí mó n fēn xī [Numerical investigation and analysis for MHD oblique shock control]. Chin Q Mech. 2008;29(1):72–78.
  • Petit JP, Geffray J. Wall confinement technique by magnetic gradient inversion accelerators combining induction effect and pulsed ionization applications. Acta Phys Pol A. 2009;115(6):1162–1163.
  • Zheng XM, Lyu HY, Xu DJ, et al. MHD jiā sù qì mó shì cí kòng jìn qì dào de yōu huà shè jì [Optimization of accelerator mode MHD controlled inlet]. Acta Aero Astron Sinica. 2010;31:223–230.
  • Su CB, Li YH, Cheng BQ, et al. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow. Chin J Aero. 2010;23(1):22–32.
  • Lapushkina TA, Erofeev AV. Supersonic flow control via plasma, electric and magnetic impacts. Aero Sci Technol. 2017;69:313–320.
  • Kalra C, Shneider MN, Miles RB. Numerical study of boundary layer separation control using magnetogasdynamic plasma actuators. Phys Fluids. 2009;21:106101.
  • Dietiker DF, Hoffmann KA. Boundary layer control in magnetohydrodynamic flows. 40th AIAA Aerospace Sciences Meeting & Exhibit; 2002 Jan 14–17; Reno, NV. Reston(VA): AIAA; 2002.
  • Dietiker DF, Hoffmann KA. Numerical simulation of MHD flows with the generalized Ohm's law. 41st AIAA Aerospace Sciences Meeting & Exhibit; 2003 Jan 6–9; Reno, NV. Reston(VA): AIAA; 2003.
  • Mikhail NS, Sergey OM. Hypersonic aerodynamic control and thrust vectoring by nonequilibrium cold-air MHD devices. 43rd AIAA Aerospace Sciences Meeting & Exhibit; 2005 Jan 10–13; Reno, NV. Reston(VA): AIAA; 2005.
  • Hartmann J, Lazarus F. Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field. Math Fys Medd. 1937;15(7):1–45.
  • Resler EL, Sears WR. The prospects for magneto-aerodynamics. J Aeronaut Sci. 1958;25:235–245.
  • Fan YH, Jiang CW, Gao ZX, et al. Cí liú t tuān liú jí shù zhí mó nyán jiū zōng shù [Review of the magnetohydrodynamic turbulence and its numerical simulation]. Mech Eng. 2016;38(1):14–21.
  • Moffatt HK. On the suppression of turbulence by a uniform magnetic field. J Fluid Mech. 1967;28(3):571–592.
  • Zikanov O, Thess A. Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J Fluid Mech. 1998;358:299–333.
  • Chen Z, Lee CH, Zhang JB. Nonlinear eddy viscosity k-ω turbulence model for incompressible low ReM magnetohydrodynamic flows. Sci Sinica Phys Mech Astron. 2011;41(8):995–1002.
  • Brouillette EC, Lykoudis PS. Magneto-fluid-mechanic channel flow. I. Experiment. Phys Fluids. 1967;10(5):995–1001.
  • Kobayashi H. Large-eddy simulation of MHD turbulent duct flows using a dynamic subgrid-scale model. 38th Plasmadynamics and Lasers Conference; 2007 Jun 25–28; Miami, FL. Reston(VA): AIAA; 2007.
  • Lee D, Choi H. Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds number. J Fluid Mech. 2001;439:367–394.
  • Sommeria J, Moreau R. Why, how and when, MHD turbulence becomes two-dimensional. J Fluid Mech. 1982;118:507–518.
  • Shionoya H, Kobayashi H, Okuno Y. Numerical study on turbulent flows in a liquid metal MHD generator. 42nd Plasmadynamics and Lasers Conference; 2011 Jun 27–30; Honolulu, HI. Reston(VA): AIAA; 2011.
  • Fan YH. Theoretical modeling and numerical study of high speed compressible magnetohydrodynamic turbulence [dissertation]. Beijing: Beihang University; 2019.
  • Yokoi N. Mass and internal-energy transports in strongly compressible magnetohydrodynamic turbulence. J Plasma Phys. 2018;84(6):775840463.
  • Chernyshov AA, Karelsky KV, Petrosyan AS. Large-eddy simulation of magnetohydrodynamic turbulence in compressible fluid. Phys Plasma. 2006;13:032304.
  • Chernyshov AA, Karelsky KV, Petrosyan AS. Development of large eddy simulation for modeling of decaying compressible magnetohydrodynamic turbulence. Phys Fluids. 2007;19:055106.
  • Chernyshov AA, Karelsky KV, Petrosyan AS. Modeling of compressible magnetohydrodynamic turbulence in electrically and heat conducting fluid using large eddy simulation. Phys Fluids. 2008;20:085106.
  • Grete P, O’Shea B, Beckwith K, et al. Energy transfer in compressible magnetohydrodynamic turbulence. Phys Plasma. 2017;24:092311.
  • Yang Y, Matthaeus WH, Shi YP, et al. Compressibility effect on coherent structures, energy transfer, and scaling in magnetohydrodynamic turbulence. Phys Fluids. 2017;29:035105.
  • Andres N, Sahraoui F, Galtier S, et al. Energy cascade rate measured in a collisionless space plasma with MMS data and compressible Hall magnetohydrodynamic turbulence theory. Phys Rev Lett. 2019;123:245101.
  • Van Gorder RA, Vajravelu K. Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner–skan flow. Commun Nonlinear Sci Numer Simulat. 2010;15:2272–2277.
  • Guo L, Li FC, Xie F. Asymptotic limits of the isentropic compressible viscous magnetohydrodynamic equations with Navier-slip boundary conditions. J Differ Equations. 2019;267(12):6910–6957.
  • Ishihara T, Gotoh T, Kaneda Y. Study of high–reynolds number isotropic turbulence by direct numerical simulation. Annu Rev Fluid Mech. 2009;41:165–180.
  • Mininni PD, Pouquet A. Finite dissipation and intermittency in magnetohydrodynamics. Phys Rev E. 2009;80:025401(R).
  • Servidio S, Matthaeus WH, Dmitruk P. Depression of nonlinearity in decaying isotropic MHD turbulence. Phys Rev Lett. 2008;100:095005.
  • Anderson J Jr.. Hypersonic and high-temperature gas dynamics. Reston: AIAA Inc; 2006.
  • Vire A, Krasnov D, Knaepen B, et al. Large-Eddy simulations of turbulent hydrodynamic and magnetohydrodynamic channel flows. 61st Annual Meeting of the APS Division of Fluid Dynamics; 2008 Nov 23–25; San Antonio, TX. Ridge(NY): APS, 2009.
  • Chen L, Tang DB. Navier-Stokes characteristic boundary conditions for simulations of some typical flows. Appl Math Sci. 2010;4(18):879–893.
  • Muller U, Buhler L. Magnetofluiddynamics in channels and containers. Berlin: Springer; 2001.
  • Samtaney R, Pullin DI, Kosovic B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys Fluids. 2001;13(5):1415–1430.
  • Lumley JL, Newman GR. The return to isotropy of homogeneous turbulence. J Fluid Mech. 1977;82:161–178.
  • Lumley JL. Computational modeling of turbulent flows. Adv Appl Mech. 1978;18:123–176.
  • Schumann U. Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field. J Fluid Mech. 1976;74:31–58.
  • Alemany A, Moreau R, Sulem PL, et al. Influence of external magnetic field on homogeneous MHD turbulence. J Mech. 1979;18:277–313.
  • Kenjeres S, Hanjalic K. On the implementation of effects of Lorentz force in turbulence closure models. Int J Heat Fluid Flow. 2000;21(3):329–337.
  • Kenjeres S, Hanjalic K, Bal D. Direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows. Phys Fluids. 2004;16(5):1229–1241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.