330
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Assessment of turbulence models for single phase CFD computations of a liquid-liquid hydrocyclone using OpenFOAM

, &
Pages 79-113 | Received 24 Jun 2019, Accepted 18 Oct 2020, Published online: 29 Dec 2020

References

  • Scwerzler GI. Recycling of glaze waste through hydrocyclone separation. Powder Technol. 2005 Oct;160:135–140.
  • Braga ER, Huziwara WK, Martignoni WP, et al. Improving hydrocyclone geometry for oil/water separation. Braz J Pet Gas. 2015;9:115–123.
  • Saidi M, Maddahian R, Farhahie B, et al. Modeling of flow field and separation efficiency of a deoiling hydrocyclone using large eddy simulation. Int J Mineral Process. 2012;112-113:84–93.
  • Pinto RCV, Medronho RA, Castilho LR. Separation of CHO cells using hydrocyclones. Cytotechnology. 2008;56:57–67.
  • Elsayed A, Medronho RA, Wagner R, et al. Use of hydrocyclones for mammalian cell retention – i. Separation efficiency and cell viability. Eng Life Sci (Print). 2006;6:347–354.
  • Castilho LR, Medronho RA. A simple procedure for design and performance prediction of Bradley and Rietema hydrocyclones. Miner Eng. 2000;13:183–191.
  • Coelho MAZ, Medronho RA. A model for performance prediction of hydrocyclones. Chem Eng J. 2001;84:7–14.
  • Slack MD, Prasad RO, Bakker A, et al. Advances in cyclones modelling using unstructured grids. Chem Eng Res Des. 2000;78(8):1098–1104.
  • Delgadillo JA, Rajamani RK. A comparative study of three turbulence-closure models for the hydrocyclone problem. Int J Mineral Process. 2005;77:217–230.
  • Elsayed K. Design of a novel gas cyclone vortex finder using adjoint method. Sep Purif Technol. 2015;142:274–286.
  • Jang K, Lee GG, Huh KY. Evaluation of the turbulence models for gas flow and particle transport in urans and les of a cyclone separator. Comput Fluids. 2018;172:274–283.
  • Cui B, Wei D, Gao S, et al. Numerical and experimental studies of flow field in hydrocyclone with air core. Trans Nonferrous Met Sec China. 2014;24:2642–2649.
  • Davailles A, Climent E, Bourgeouis F. Fundamental understanding of swirling flow pattern in hydrocyclones. Sep Purif Technol. 2012;92:152–160.
  • Vakamalla TR, Kumbhar KS, Gujjula R, et al. Computational and experimental study of the effect of inclination on hydrocyclone perfomance. Sep Purif Technol. 2014;138:104–117.
  • Mokni I, Dhaouadi H, Bournot P, et al. Numerical investigation of the effect of the cylindrical height on separation perfomances of uniflow hydrocyclone. Chem Eng Sci. 2015;122:500–513.
  • Shu-ling G, De-zhou W, Weng-gang L, et al. CFD numerical simulation of flow velocity characteristics of hydrocyclone. Trans Nonferrous Metals Soc China. 2011;21(12):2783–2799.
  • Raziyeh S, Ataalah SG. CFD simulation of an industrial hydrocyclone with eulerian-eulerian approach: a case study. Int J Mining Sci Technol. 2014;24:643–648.
  • Stephens DW, Mohanarangan K. Turbulence model analysis of flow inside a hydrocyclone. Proceedings of the 7th International Conference on CFD in the Minerals and Process Industries; Melbourne, Australia. Elsevier; 2009.
  • Stephens DW, Sideroff C, Jemcov A. Simulation and validation of turbulent gas flow in a cyclone using caelus. Proceedings of the 11th International Conference on CFD in the Minerals and Process Industries; Melbourne, Australia. CSIRO; 2015.
  • Alahmadi YH, Nowakowski AF. Modified shear stress transport model with curvature correction for the prediction of swirling flow in a cyclone separator. Chem Eng Sci. 2016;147:150–165.
  • Smirnov PE, Menter FR. Sensization of the SST turbulence model to rotation and curvature by applying the spalart-shur correct term. ASME J Turbomach. 2009;131:041010.
  • Braga EB. Desenvolvimenro de Um Hidrociclone para a Separação de Óleo Presente em Águas Oleosas. D.Sc. thesis, Tecnologia de Processos Químicos e Bioquímicos/School of Chemistry/Federal University of Rio de Janeiro, Rio de Janeiro; 2015.
  • Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. In Tummers M, Hanjalic K, Nagano Y, editors. Turbulent, heat and mass tranfer 4. Antalya (Turkey): Begell House, Inc.; 2003. p. 625–632.
  • Launder BE, Spalding DB. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng. 1974;3:269–289.
  • Spalart PR, Shur M. On the sensization of turbulence models to rotation and curvature. Aerospace Sci Technol. 1997;5:297–302.
  • Yakhot V, Thangam S, Gatski TB, et al. Development of turbulence models for shear flows by a double expansion technique. ICASE; 1991 Jul.
  • Shih T, Liou WW, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids. 1995a;24:227–238.
  • Wilcox DC. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988;26.
  • Zhu J, Shih TH. Computation of confined coflow jets with three turbulence models. Int J Numer Methods Fluids. 1994;19:939–956.
  • Lien FS, Chen WL, Leschziner MA. Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations. In Rodi B, editor. Engineering turbulence modelling and measurements 3. Heraklion-Crete (Greece): Elsevier; 1996. p. 91–100.
  • Klein TS, Craft TJ, Iacovides H. The development and application of two-time-scale turbulence models for non-equilibrium flows. Int J Heat Fluid Flow. 2018;71:334–352.
  • Gibson MM, Launder BE. Ground effects on pressure fluctuation in the atmospheric boundary layer. J Fluid Mech. 1978;86:491–511.
  • Launder BE, Reece GJ, Rodi W. Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech. 1975;68:537–566.
  • Pirker S, Goniva C, Kloss C, et al. Application of a hybrid lattice Boltzmann-finite volume turbulence model to cyclone short-cut flow. Powder Technol. 2013;235:572–580.
  • Pope SB. Turbulent-viscosity models. Cambridge University Press; 2000. p. 358–386.
  • Shih T, Zhu J, Lumley JL. A new Reynolds stress algebraic equation model. Comp Methods Appl Mech Engrg. 1995b;125:287–302.
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32.
  • Hanjalic K, Launder BE, Schiestel R. Multiple-time scale concept in turbulent transport modelling. 1980. p. 2–4.
  • Craft TJ, Launder BE, Suga K. Development and application of a cubic eddy-viscosity model of turbulence. Int J Heat Fluid Flow. 1996;17:108–115.
  • Moradnia P. CFD of air flow in hydro power generators. Licenciate of engineering thesis, Thesis for the Degree of Licentiate of Engineering/Department of Applied Mechanics/Chalmers University of Technology, Gteborg; 2010.
  • Liu F. A thorough description of how wall functions are implemented in OpenFOAM. In: Nilsson H, editor. Proceedings of CFD with OpenSource Software; 2016. Available from: http://www.tfd.chalmers.se/∼hani/kurser/OS_CFD/#YEAR_2016
  • Wilcox DC. Turbulence modeling for CFD. La Cañada: DCW Industries, Inc.; 1994.
  • Celik IB, Ghia U, Roache PJ, et al. Procedure of estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng. 2008;130:4. doi:10.1115/1.2960953.
  • Abe H, Kawamura H, Matsuo Y. Surface heat-flux fluctuation in a turbulent channel flow up to Reτ=1020 with Pr=0.025 and 0.71. Int J Heat Fluid Flow. 2004;25:404–419.
  • Almeida YP. Simulação fluidodinâmica de uma válvula ciclônica [dissertation]. Programa de Engenharia Mecânica, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro; 2015.
  • Monson DJ, Seegmiller HL, Mcconnaughey PK. Comparison of experiment with calculations using curvature-corrected zero and two equation turbulence models for a two-dimensional U-duct. Proceedings of the AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA; 1990.
  • Passalacqua A, Fox RO. Implementation of an iterative solution procedure for multi-fluid gas–particle flow models on unstructured grids. Powder Technol. 2011;213:174–187.
  • Svarovsky L. Solid-Liquid separation. 4th ed. Oxford: Butterworth-Heinemann; 2000.
  • Marins LPM, Duarte DG, Loureiro JBR, et al. LDV and PIV characterization of the flow in a hydrocyclone without an air-core. J Pet Sci Eng. 2010;70:168–176.
  • Saqr KM, Kassem HI, Aly HS, et al. Computational study of decaying annular vortex flow using the Rϵ/k−ϵ turbulence model. Appl Math Model. 2012;36:4652–4664.
  • Brar LS, Sharma RP, Elsayed K. The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone. Powder Technol. 2015;286:668–677. doi:10.1016/j.powtec.2015.09.003.
  • Ko J, Zahrai S, Macchion O, et al. Numerical modeling of highly swirling flows in a through-flow cylindrical hydrocyclone. AIChE J. 2006;52(10):3334–3344. doi:10.1002/aic.10955.
  • Dong S, Jiang Y, Jin R, et al. Numerical study of vortex eccentricity in a gas cyclone. Appl Math Model. 2020;80:683–701. doi:10.1016/j.apm.2019.11.024.
  • Gildeh HK, Mohammadian A, Nistor I, et al. Numerical modeling of turbulent buoyant wall jets in stationary ambient water. J Hydraul Eng. 2014a;140(6).
  • Gildeh HK, Mohammadian A, Nistor I, et al. Numerical modeling of 30∘ and 45∘ inclined dense turbulent jets in stationary ambient. J Environ Fluid Mech. 2014b;15(3):537–562.
  • Gildeh HK, Mohammadian A, Nistor I, et al. CFD modelling and analysis of the behavior of 30∘ and 45∘ inclined dense jets – new numerical insights. J Appl Water Eng Res. 2015;4(2):112–127.
  • Menter F, Esch T. Elements of industrial heat transfer predictions. Proceedings of COBEM 2001, Invited Lectures; Uberlândia, MG, Brazil. ABCM; 2001. p. 117–127.
  • Daly BJ, Harlow FH. Transport equations in turbulence. Phys Fluids. 1970;13:2634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.