360
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Turbulent flow characteristics over forward-facing obstacle

, , &
Pages 141-179 | Received 18 Apr 2020, Accepted 17 Nov 2020, Published online: 02 Dec 2020

References

  • Lyn DA. Turbulence measurements in open channel flows over artificial bed forms. J Hydraul Eng. 1993;119(3):306–326.
  • Venditti JG. Turbulent flow and drag over fixed two- and three-dimensional dunes. J Geophy Res. 2007;112:F04008.
  • Omidyeganeh M, Piomelli U. Large-eddy simulation of two-dimensional dunes in a steady, unidirectional flow. J Turbulence. 2011;12(42):1–31.
  • Singh AP, Paul AR, Ranjan P. Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle. Int J Eng Sci Tech. 2011;3(2):84–88.
  • Macdonald RG. Flow and sediment transport at hydraulic jumps [Ph. D. dissertation] School of Environmental Science, University of East Anglia, Norwich, UK; 2010.
  • Nelson JM, Smith JD. Mechanics of flow over ripples and dunes. J Geophys Res. 1989;94(C6):8146–8162.
  • Bennett SJ, Best JL. Mean flow and turbulence structure over fixed, two-dimensional dunes: Implications for sediment transport and bedform stability. Sedimentology. 1995;42:491–513.
  • Mazumder BS, Ghoshal K, Dalal DC. Influence of bed roughness on sediment suspension: experimental and theoretical studies. J Hydraul Res. 2005;43(3):245–257.
  • Ojha SP, Mazumder BS. Turbulence characteristics of flow region over a series of 2-D dune shaped structures. Adv Water Res. 2008;31:561–576.
  • Mazumder BS, Pal DK, Ghoshal K, et al. Turbulence statistics of flow over isolated scalene and isosceles triangular-shaped bedforms. J Hydraul Res. 2009;47(5):626–637.
  • Mao Y. The effects of turbulent burstings on the sediment movement in suspension. Int J Sediment Res. 2003;18(2):148–157.
  • Ando T, Shakouchi T. Flow characteristics over forward facing step and through abrupt contraction pipe and drag reduction. Res Rep Fac Eng Meiji Univ. 2004;29:1–8.
  • Largeau J, Moriniere V. Wall pressure fluctuations and topology in separated flows over a forward-facing step. Exp Fluids. 2007;42(1):21–40.
  • Camussi R, Felli M, Pereira F, et al. Statistical properties of wall pressure fluctuations over a forward-facing step. Phys Fluids. 2008;20(7):075113.
  • Sherry MJ, Jacono DL, Sheridan J. An experimental investigation of the recirculation zone formed downstream of a forward facing step. J Wind Eng Ind Aerodyn. 2010;98:888–894.
  • Ren H, Wu Y. Turbulent boundary layers over smooth and rough forward facing steps. Phys Fluids. 2011;23(4):1–17.
  • Mazumder BS, Sarkar K. Turbulent flow characteristics and drag over 2-D forward-facing dune shaped structures with two different stoss-side slopes. Environ Fluid Mech. 2014;14:617–645.
  • Sarkar K, Mazumder BS. Higher-order moments with turbulent length-scales and anisotropy associated with flow over dune shapes in tidal environment. Phys Fluids. 2018;30:106602.
  • Cabeza C, Varela J, Bove I, et al. Two-layer stratified flows over pronounced obstacles at low-to-intermediate Froude numbers. Phys Fluids. 2009;21:044102.
  • Sarkar K, Mazumder BS. Turbulent flow over the trough region formed by a pair of forward-facing bedform shapes. Europ J Mech B/Fluids. 2014;46:126–143.
  • Kiya M, Sasaki K. Structure of a turbulent separation bubble. J Fluid Mechanics. 1983;137:83–113.
  • Armaly BF, Dursts F, Pereira JCF, et al. Experimental and theoretical investigation of backward-facing step flow. J Fluid Mech. 1983;127:473–496.
  • Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow a backward-facing step. J Fluid Mech. 1997;330:349–374.
  • Barkley D, Gomes MGM, Henderson RD. Three-dimensional instability in flow over a backward-facing step. J Fluid Mech. 2002;473:167–190.
  • Addad Y, Benhamadouche S, Laurence D. The negatively buoyant wall-jet: LES results. Int J Heat Fluid Flow. 2004;5(25):795–808.
  • Saleel CA, Shaija A, Jayaraj S. Numerical simulation of fluid flow over a forward backward facing step using immersed boundary method. Int J Eng Sci Tech. 2011;3(10):7714–7729.
  • Loureiro JBR, Silva Freire AP. Experimental investigation of turbulent boundary layers over steep two-dimensional elevations. J Braz Soc Mech Sci Eng. 2005;XXVII(4):330.
  • Yakhot A, Liu H, Niktin N. Turbulent flow around a wall-mounted cube: a direct numerical simulation. Int J Heat Fluid Flow. 2006;27:994–1009.
  • Fenton JD. Obstacles in streams and their roles as hydraulic structures. Hydraulic Structures – Proc. 2nd International Junior Researcher and Engineer Workshop on Hydraulic Structures. 2008:15–22.
  • Tcheukam-Toko D, Mokem-Chetchueng M, Mouangue R, et al. Characterization of hydraulic jump over an obstacle in an open channel flow. Int J Hydraul Eng. 2013;2(5):71–84.
  • Dewey R, Richmond D, Garrett C. Stratified tidal flow over a bump. J Phys Oceanogr. 2005;35(10):1911–1927.
  • Weinfurtner S, Tedford EW, Penrice MCJ, et al. Measurement of stimulated Hawking emission in an analogue system. Phys Rev Lett. 2011;106(2):021302.
  • Rousseaux G, Maissa P, Mathis C, et al. Horizon effects with surface waves on moving water. N J Phys. 2010;12:095018, (28pp).
  • Unruh WG. Experimental black-hole evaporation? Phys Rev Lett. 1981;46:1351–1353.
  • Euve LP, Michel F, Parentani R, et al. Wave blocking and partial transmission in subcritical flows over an obstacle. Phys Rev D. 2015;91:024020.
  • Sarkar K, Chakraborty C, Mazumder BS. Variations of bed elevations due to turbulence around submerged cylinder in sand beds. Environ Fluid Mech. 2016;16:659–693.
  • Venditti JG, Bauer BO. Turbulent flow over a dune: Green River, Colorado. Earth Surf Process Landforms. 2005;30:289–304.
  • Gabel SL. Geometry and kinematics of dunes during steady and unsteady flows in the Calamus River, Nebraska, USA. Sedimentology. 1993;40(2):237–269.
  • Julien PY, Klaassen GJ. Sand-dune geometry of large rivers during floods. J Hydraul Eng ASCE. 1995;121(9):657–663.
  • Schlichting H, Gersten K. Boundary-layer theory. Berlin: Springer-Verlag; 2000.
  • Yang SQ, Tan SK, Lim SY. Velocity distribution and dip-phenomenon in smooth uniform open cannel flows. J Hydraul Eng. 2004;130(12):1179–1186.
  • Absi R. An ordinary differential equation for velocity distribution and dip-phenomenon in open channel flows. J Hydraul Res. 2011;49:82–89.
  • Yang SQ, Lim SY, McCorquodale JA. Investigation of near wall velocity in 3-D smooth channel flows. J Hydraul Res. 2005;43(2):149–157.
  • Yassin A. Mean roughness coefficient in open channels with different roughness of bed and sidewalls [Ph.D. thesis]. Lamann, Zurich;1953.
  • Coleman NL. Velocity profiles with suspended sediment. J Hydraulic Res. 1981;19(3):211–229.
  • Long D, Steffler PM, Rajaratnam N. Study of flow structure in submerged hydraulic jump. J Hydraulic Res. 1990;28:437–460.
  • Tachie MF, Balachandar R, Bergstrom DJ. Roughness effects on turbulent plane wall jets in an open channel. Exp Fluids. 2004;37:281–292.
  • Cardoso AH, Graf WH, Gust G. Uniform flow in smooth open channel. J Hydraulic Res. 1989;27(5):603–616.
  • Roach PE. The generation of nearly isotropic turbulence by means of grids. Heat Fluid Flow. 1986;8(2):82–92.
  • El-Gabry LA, Thurman DR, Poinsatte PE. Procedure for determining turbulence length scales using hotwire anemometry. NASA/TM. 2014; 218403.
  • Goring DG, Nikora VI. Despiking acoustic Doppler velocimeter data. J Hydraul Eng. 2002;128(1):117–126.
  • Wahl TL. Analyzing ADV data using Win ADV. In: Hotchkiss R.H. Glade M., editors. Joint Conf. on Water Resour. Engineering and Water Resour. Planning & Management, ASCE; 2000 Jul 30–Aug 2; Minneapolis (MN).
  • Lohrmann A, Cabrera R, Kraus NC. Acoustic-doppler velocimeter (ADV) for laboratory use. in fundamental and advancements in hydraulic measurements and experimentation. Ed. by C. A. Pugh. 1994; ASCE: 351–365.
  • SonTek Inc. ADV principles of operation. Technical document. San Diego (CA); 2001.
  • Nezu I, Rodi W. Open channel flow measurements with a laser Doppler anemometer. J Hydraul Eng. 1986;112(5):335–355.
  • Nezu I, Nakagawa H. Turbulence in open-channel flows. Rotterdam: A.A. Balkema, CRC Press; 1993.
  • Venditti JG, Bennett SJ. Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. J Geophys Res. 2000;105(C9):22035–22047.
  • Roy S, Debnath K, Mazumder BS. Turbulence statistics and distribution of turbulent eddies for jet flow and rigid surface interaction. Arch Mech. 2018;70(1):55–88.
  • Ernstsen VB, Noormets R, Winter C, et al. Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Mar Lett. 2006;26(3):151–163.
  • Lefebvre A, Ernstsen VB, Winter C. Influence of compound bedforms on hydraulic roughness in a tidal environment. Ocean Dyn. 2011;61(12):2201–2210.
  • Maity H, Mazumder BS. Experimental investigation of the impacts of coherent flow structures upon turbulence properties in regions of crescentic scour. Earth Surf Process Landform. 2014;39:995–1013.
  • Parsheh M, Sotiropoulos F, Porte-Agel F. Estimation of power spectra of acoustic Doppler-velocimetry data contaminated with intermittent spikes. J Hydraul Eng. 2010;1061: /(ASCE)HY.1943-7900.0000202, 368–378.
  • Corvaro S, Seta E, Mancinelli A, et al. Flow dynamics in porous medium. Coast Eng. 2014;91:280–298.
  • Levi EA. Universal Strouhal law. J Eng Mech. 1983;109(3):718–727.
  • Müller A, Gyr A. On the vortex formation in the mixing layer behind dunes. J Hydraul Res. 1986;24:359–375.
  • Venditti JG. Spatial and temporal turbulence structure over sub-aqueous dunes: field and laboratory experiments [master’s thesis] University of Southern California. 1997; 137
  • Kostaschuk RA, Church MA. Macroturbulence generated by dunes: Fraser River, Canada. Sediment Geol. 1993;85:25–37.
  • Antoniou J, Bergeles G. Development of the reattached flow behind surface-mounted two-dimensional prisms. J Fluids Eng. 1988;110(2):127–133.
  • Imamura J, Takagi K, Nagaya S. Engineering analysis of turbulent flow measurements near Kuchinoshima Island. J Mar Sci Technol. 2019;24:329–337.
  • Lu SS, Willmarth WW. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech. 1973;60(3):481–511.
  • Brodkey RS, Wallace JM, Eckelmann H. Some properties of truncated turbulence signals in bounded shear flows. J Fluid Mech. 1974;63(2):209–224.
  • Nakagawa H, Nezu I. Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J Fluid Mech. 1977;80(1):99–128.
  • Raupach MR. Conditional statistics of Reynolds stress in rough wall and smooth-wall turbulent boundary layers. J Fluid Mech. 1981;108:363–382.
  • Clifford NJ, French JR, Hardisty J. Turbulence: perspective on flow and sediment transport. Chichester: Wileys; 1993.
  • Corino ER, Brodkey RS. A visual investigation of the wall region in turbulent flow. J Fluid Mech. 1969;37(1):1–30.
  • Barman K, Debnath K, Mazumder BS. Higher-order turbulence statistics of wave–current flow over a submerged hemisphere. Fluid Dyn Res. 2017;49:025504, (27pp).
  • Batchelor GK, Townsend AA. The nature of turbulent motion at large wave-numbers. Proc R Soc Lond Ser A. 1949.
  • Nikora VI, Goring DG. Eddy convection velocity and Taylor’s hypothesis of frozen turbulence in a rough-bed open-channel flow. J Hydrosci Hydraul Eng. 2000;18(2):75–91. JSCE.
  • Markatos NC. The mathematical modeling of turbulent flows. Appl Math Model. 1986;10:190–220.
  • Bennett SJ, Bridge JS, Best JL. Fluid and sediment dynamics of upper stage plane beds. J Geophys Res. 1998;103:1239–1274.
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Balachandar R, Bhuiyan F. Higher-order moments of velocity fluctuations in an open-channel flow with large bottom roughness. J Hydraul Eng. 2007;133:77–87.
  • Tennekes H, Lumley JL. A first course in turbulence. MIT press; 1972.
  • Czernuszenko W, Rowinski PM. Shear stress statistics in a compound channel flow. Arch Hydro-Eng Environ Mech. 2008;55(1–2):3–27.
  • Mazumder BS, Das SK. Effect of boundary reaction on solute dispersion in pulsatile flow through a tube. J Fluid Mech. 1992;239:523–549.
  • Roy S, Debnath K, Mazumder BS. Distribution of eddy scales for wave current combined flow. Appl Ocean Res. 2017;63:170–183.
  • Valle BL, Pasternack GB. Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel. Geomorphology. 2006;82:146–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.