309
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of vortical structures for enstrophy and scalar transport in flows with and without stable stratification

, , &
Pages 393-412 | Received 25 May 2020, Accepted 19 Nov 2020, Published online: 04 Mar 2021

References

  • Dubief Y, Delcayre F. On coherent-vortex identification in turbulence. J Turb. 2000;1(1):N11.
  • Haller G. Lagrangian coherent structures. Annu Rev Fluid Mech. 2015;47:137–162.
  • Lesieur Ml.Turbulence in fluids: stochastic and numerical modelling. Boston (MA): Nijhoff; 1987.
  • da Silva CB, Dos Reis RJN, Pereira JCF. The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J Fluid Mech. 2011;685:165–190.
  • Frisch U, Kolmogorov AN. Turbulence: the legacy of AN Kolmogorov. Cambridge, UK: Cambridge University Press; 1995.
  • Tsinober A. An informal conceptual introduction to turbulence. Vol. 483, Berlin, Germany: Springer; 2009.
  • Jiménez J, Wray AA, Saffman PG, et al. The structure of intense vorticity in isotropic turbulence. J Fluid Mech. 1993;255:65–90.
  • Siggia ED. Numerical study of small-scale intermittency in three-dimensional turbulence. J Fluid Mech. 1981;107:375–406.
  • Jimenez J, Wray AA. On the characteristics of vortex filaments in isotropic turbulence. J Fluid Mech. 1998;373:255–285.
  • Vincent A, Meneguzzi M. The satial structure and statistical properties of homogeneous turbulence. J Fluid Mech. 1991;225:1–20.
  • Tanahashi M, Iwase S, Miyauchi T. Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J Turbul. 2001;2(6):N6.
  • Kang SJ, Tanahashi M, Miyauchi T. Dynamics of fine scale eddy clusters in turbulent channel flows. J Turbul. 2007;8(6):N52.
  • Ganapathisubramani B, Lakshminarasimhan K, Clemens NT. Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J Fluid Mech. 2008;598:141–175.
  • Hussain AKMF. Coherent structures and turbulence. J Fluid Mech. 1986;173:303–356.
  • Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. 1970;17:445–454.
  • Hunt JCR, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. 1988. In Annual Research Briefs 2003, pp. 193–208. Stanford, CA: Cent. Turbul. Res.
  • Weiss J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys D. 1991;48(2–3):273–294.
  • Hua BL, Klein P. An exact criterion for the stirring properties of nearly two-dimensional turbulence. Physica D. 1998;113(1):98–110.
  • Haller G, Hadjighasem A, Farazmand M, et al. Defining coherent vortices objectively from the vorticity. J Fluid Mech. 2016;795:136–173.
  • Serra M, Haller G. Objective eulerian coherent structures. Chaos. 2016;26(5):053110.
  • Kadoch B, Iyer K, Donzis D, et al. On the role of vortical structures for turbulent mixing using direct numerical simulation and wavelet-based coherent vorticity extraction. J Turbul. J.  12 (2011), N20.
  • Beta C, Schneider K, Farge M. Wavelet filtering to study mixing in 2d isotropic turbulence. Comm Nonlin Sci Num Sim. 2003;8(3–4):537–545.
  • Dharmarathne S, Pulletikurthi V, Castillo L. Coherent vortical structures and their relation to hot/cold spots in a thermal turbulent channel flow. Fluid. 2018;3(1):14.
  • Debusschere B, Rutland CJ. Turbulent scalar transport mechanisms in plane channel and couette flows. Int J Heat Mass Transfer. 2004;47(8–9):1771–1781.
  • Fröhlich J, García-Villalba M, Rodi W. Scalar mixing and large-scale coherent structures in a turbulent swirling jet. Flow Turbul Combust. 2008;80(1):47–59.
  • Corrsin S, Kistler AL. Free-stream boundaries of turbulent flows. 1955. NACA TN-3133, TR-1244, pp. 1033–1064.
  • Westerweel J, Fukushima C, Pedersen JM, et al. Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J Fluid Mech. 2009;631:199–230.
  • da Silva CB, Hunt JCR, Eames I, et al. Interfacial layers between regions of different turbulence intensity. Annu Rev Fluid Mech. 2014;46:567–590.
  • Chauhan K, Philip J, de Silva CM, et al. The turbulent/non-turbulent interface and entrainment in a boundary layer. J Fluid Mech. 2014;742:119–151.
  • Mistry D, Philip J, Dawson JR, et al. Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J Fluid Mech. 2016;802:690–725.
  • Watanabe T, da Silva CB, Sakai Y, et al. Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers. Phys Fluid. 2016;28(3):031701.
  • Holzner M, Lüthi B. Laminar superlayer at the turbulence boundary. Phys Rev Lett. 2011;106(13):134503.
  • Watanabe T, Jaulino R, Taveira RR, et al. Role of an isolated eddy near the turbulent/non-turbulent interface layer. Phys Rev Fluid. 2017;2(9):094607.
  • Neamtu-Halic MM, Krug D, Haller G, et al. Lagrangian coherent structures and entrainment near the turbulent/non-turbulent interface of a gravity current. J Fluid Mech. 2019;877:824–843.
  • Dimotakis PE. The mixing transition in turbulent flows. J Fluid Mech. 2000;409:69–98.
  • Watanabe T, Sakai Y, Nagata K, et al. Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys Fluid. 2015;27(8):085109.
  • Ellison TH, Turner JS. Turbulent entrainment in stratified flows. J Fluid Mech. 1959;6(3):423–448.
  • Krug D, Holzner M, Lüthi B, et al. The turbulent/non-turbulent interface in an inclined dense gravity current. J Fluid Mech. 2015;765:303–324.
  • van Reeuwijk M, Krug D, Holzner M. Small-scale entrainment in inclined gravity currents. Environ Fluid Mech. 2018;18(1):225–239.
  • van Reeuwijk M, Holzner M, Caulfield CP. Mixing and entrainment are suppressed in inclined gravity currents. J Fluid Mech. 2019;873:786–815.
  • Neamtu-Halic MM, Krug D, Mollicone J-P, et al. Connecting the time evolution of the turbulence interface to coherent structures. J Fluid Mech. (accepted, in press). 2020. 898, A3.
  • Craske J, van Reeuwijk M. Energy dispersion in turbulent jets. part 1. direct simulation of steady and unsteady jets. J Fluid Mech. 2015;763:500–537.
  • Krug D, Holzner M, Marusic I, et al. Fractal scaling of the turbulence interface in gravity currents. J Fluid Mech. 2017b;0:820.
  • Watanabe T, Riley JJ, Nagata K, et al. A localized turbulent mixing layer in a uniformly stratified environment. J Fluid Mech. 2018;849:245–276.
  • Haller G. Dynamic rotation and stretch tensors from a dynamic polar decomposition. J Mech Phys Solids. 2016;86:70–93.
  • Bisset DK, Hunt JCR, Rogers MM. The turbulent/non-turbulent interface bounding a far wake. J Fluid Mech. 2002;451:383–410.
  • Holzner M, Liberzon A, Nikitin N, et al. Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface. Phys Fluids. 2007;19(7):071702.
  • Holzner M, Liberzon A, Nikitin N, et al. A lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J Fluid Mech. 2008;598:465–475.
  • Silva TS, Zecchetto M, da Silva CB. The scaling of the turbulent/non-turbulent interface at high reynolds numbers. J Fluid Mech. 2018;843:156–179.
  • Taveira RR, Diogo JS, Lopes DC, et al. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet. Phys Rev E. 2013;88(4):043001.
  • Ellison TH. Turbulent transport of heat and momentum from an infinite rough plane. J Fluid Mech. 1957;2(5):456–466.
  • Townsend AA. Turbulent flow in a stably stratified atmosphere. J Fluid Mech. 1958;3(4):361–372.
  • Holzner M, van Reeuwijk M. The turbulent/nonturbulent interface in penetrative convection. J Turbul. 2017;18(3):260–270.
  • Tennekes H, Lumley JL. A first course in turbulence. MIT Press; 2018. Cambridge, Massachusetts (United States).
  • Krug D, Chung D, Philip J, et al. Global and local aspects of entrainment in temporal plumes. J Fluid Mech. 2017a;812:222–250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.