320
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Cluster-based probabilistic structure dynamical model of wind turbine wake

ORCID Icon, & ORCID Icon
Pages 497-516 | Received 27 Oct 2020, Accepted 27 Apr 2021, Published online: 19 May 2021

References

  • Scott R, Bossuyt J, Cal RB. Characterizing tilt effects on wind plants. J Renew Sust Energ. 2020;12(4):043302.
  • Hamilton N, Tutkun M, Cal RB. Anisotropic character of low-order turbulent flow descriptions through the proper orthogonal decomposition. Phys Rev Fluids. 2017;2(1):014601.
  • Ali N, Hamilton N, Calaf M, et al. Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms. J Turbulence. 2019;20(1):32–63.
  • Hu J, Tang J, Lin Y. A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization. Renew Energ. 2020;149:141–164.
  • Kadum H, Cal RB, Quigley M, et al. Compounded energy gains in collocated wind plants: energy balance quantification and wake morphology description. Renew Energ. 2020;150:868–877.
  • Scott R, Viggiano B, Dib T, et al. Wind turbine partial wake merging description and quantification. Wind Energ. 2020;9:1610.
  • Bossuyt J, Scott R, Ali N, et al. Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines. J Fluid Mech. 2021;917:A3. doi:10.1017/jfm.2021.237.
  • Keane A, Aguirre PEO, Ferchland H, et al. An analytical model for a full wind turbine wake. Journal of Physics: Conference Series; Vol. 753, IOP Publishing; 2016. p. 032039.
  • Mortensen NG, Landberg L, Troen I, et al. Wind atlas analysis and application program (WAsP). Vol. 1, Getting started 1.
  • Larsen GC, Aagaard HM, Bingöl F, et al. Dynamic wake meandering modeling.
  • Boersma S, Doekemeijer BM, Gebraad PM. A tutorial on control-oriented modeling and control of wind farms. 2017 American Control Conference (ACC); IEEE; 2017. p. 1–18.
  • Annoni J, Fleming P, Scholbrock A, et al. Analysis of control-oriented wake modeling tools using Lidar field results. typeTech. Rep., institution National Renewable Energy Lab. (NREL); Golden, CO: 2018.
  • Calaf M, Meneveau C, Meyers J. Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids. 2010;22(1):015110.
  • Wu Y-T, Porté-Agel F. Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary Layer Meteorol. 2011;138(3):345–366.
  • Melius M, Tutkun M, Cal RB. Identification of Markov process within a wind turbine array boundary layer. J Renew Sust Energ. 2014;6(2):023121.
  • Melius MS, Tutkun M, Cal RB. Solution of the Fokker–Planck equation in a wind turbine array boundary layer. Phys D: Nonlinear Phenomena. 2014;280:14–21.
  • Camp EH, Cal RB. Mean kinetic energy transport and event classification in a model wind turbine array versus an array of porous disks: energy budget and octant analysis. Phys Rev Fluids. 2016;1(4):044404.
  • Rockel S, Peinke J, Hölling M, et al. Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid. Renew Energ. 2017;112:1–16.
  • Ali N, Cortina G, Hamilton N, et al. Turbulence characteristics of a thermally stratified wind turbine array boundary layer via proper orthogonal decomposition. J Fluid Mech. 2017;828:175–195.
  • Ali N, Hamilton N, DeLucia D, et al. Assessing spacing impact on coherent features in a wind turbine array boundary layer. Wind Energy Sci. 2018;3(1):43–56.
  • Ali N, Cal RB. Data-driven modeling of the wake behind a wind turbine array. J Renew Sust Energ. 2020;12(3):033304.
  • Antoulas AC. Approximation of large-scale dynamical systems. Vol. 6. Philadelphia: SIAM; 2005.
  • Rowley CW. Model reduction for fluids, using balanced proper orthogonal decomposition. Modeling And Computations In Dynamical Systems: In Commemoration of the 100th Anniversary of the Birth of John von Neumann; World Scientific; 2006. p. 301–317.
  • Bistrian DA, Susan-Resiga RF. Weighted proper orthogonal decomposition of the swirling flow exiting the hydraulic turbine runner. Appl Math Model. 2016;40(5–6):4057–4078.
  • Jin Y, Lu K, Hou L, et al. An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system. J Sound Vib. 2017;411:210–231.
  • Noack BR, Afanasiev K, Morzyński M, et al. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J Fluid Mech. 2003;497:335–363.
  • Noack BR, Morzynski M, Tadmor G. Reduced-order modelling for flow control. Vol. 528. Italy: Springer Science & Business Media; 2011.
  • Kaiser E, Noack BR, Cordier L, et al. Cluster-based reduced-order modelling of a mixing layer. J Fluid Mech. 2014;754:365–414.
  • Östh J, Kaiser E, Krajnović S, et al. Cluster-based reduced-order modelling of the flow in the wake of a high speed train. J Wind Eng Ind Aerod. 2015;145:327–338.
  • Hamilton N, Viggiano B, Calaf M, et al. A generalized framework for reduced-order modeling of a wind turbine wake. Wind Energ. 2018;21(6):373–390.
  • Cao Y, Kaiser E, Borée J, et al. Cluster-based analysis of cycle-to-cycle variations: application to internal combustion engines. Exp Fluids. 2014;55(11):1837.
  • Kaiser E, Morzyński M, Daviller G, et al. Sparsity enabled cluster reduced-order models for control. J Comput Phys. 2018;352:388–409.
  • Wei Z, Yang Z, Xia C, et al. Cluster-based reduced-order modelling of the wake stabilization mechanism behind a twisted cylinder. J Wind Eng Indust Aerod. 2017;171:288–303.
  • Barwey S, Hassanaly M, An Q, et al. Experimental data-based reduced-order model for analysis and prediction of flame transition in gas turbine combustors. Combust Theor Model. 2019;23:1–27.
  • Ali N, Viggiano B, Tutkun M, et al. Cluster-Based reduced-Order descriptions of two phase flows. Chem Eng Sci. 2020;222:115660.
  • Liu Y, Gao X, Yan J, et al. Clustering methods of wind turbines and its application in short-term wind power forecasts. J Renew Sust Energ. 2014;6(5):053119.
  • Wang K, Qi X, Liu H, et al. Deep belief network based k-means cluster approach for short-term wind power forecasting. Energ. 2018;165:840–852.
  • Wu W, Peng M. A data mining approach combining k-means clustering with bagging neural network for short-term wind power forecasting. IEEE Int Things J. 2017;4(4):979–986.
  • Ali N. Thermally (un-) stratified wind plants: stochastic and data-driven reduced order descriptions/modeling [Ph.D. thesis] Portland State University; 2018.
  • Ali N, Calaf M, Cal RB. Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes. J Renew Sust Energ. 2021;13(2):023307.
  • Burkardt J, Gunzburger M, Lee H-C. POD and CVT-based reduced-order modeling of Navier–Stokes flows. Comput Methods Appl Mech Eng. 2006;196(1–3):337–355.
  • Ali N, Calaf M, Cal RB. Reduced-order modeling of the wake behind a single wind turbine. iTi Conference on Turbulence; Springer; 2018. p. 285–290.
  • Hamilton N, Tutkun M, Cal RB. Low-order representations of the canonical wind turbine array boundary layer via double proper orthogonal decomposition. Phys Fluids. 2016;28(2):025103.
  • Holmes P, Lumley JL, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry. UK: Cambridge University Press; 1998.
  • Hamilton N, Tutkun M, Cal RB. Wind turbine boundary layer arrays for Cartesian and staggered configurations: part II. low-dimensional representations via the proper orthogonal decomposition. Wind Energ. 2015;18(2):297–315.
  • Ali N, Kadum HF, Cal RB. Focused-based multifractal analysis of the wake in a wind turbine array utilizing proper orthogonal decomposition. J Renew Sust Energ. 2016;8(6):063306.
  • Camp EH, Cal RB. Low-dimensional representations and anisotropy of model rotor versus porous disk wind turbine arrays. Phys Rev Fluids. 2019;4(2):024610.
  • Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms; SIAM; 2007. p. 1027–1035.
  • Ali N, Hamilton N, Calaf M, et al. Classification of the Reynolds stress anisotropy tensor in very large thermally stratified wind farms using colormap image segmentation. J Renew Sust Energ. 2019;11(6):063305.
  • Sharma V, Calaf M, Lehning M, et al. Time-adaptive wind turbine model for an LES framework. Wind Energ. 2015;18(5):0.
  • Ali N, Hamilton N, Cortina G, et al. Anisotropy stress invariants of thermally stratified wind turbine array boundary layers using large eddy simulations. J Renew Sust Energ. 2018;10(1): 013301.
  • Dutt A, Subramani DN, Kulkarni CS, et al. Clustering of Massive Ensemble of Vehicle Trajectories in Strong, Dynamic and Uncertain Ocean Flows. OCEANS 2018 MTS/IEEE Charleston; IEEE; 2018. p. 1–7.
  • Brunton SL, Kutz JN. Data-driven science and engineering: machine learning, dynamical systems, and control. UK: Cambridge University Press; 2019.
  • Newman AJ, Drew DA, Castillo L. Pseudo spectral analysis of the energy entrainment in a scaled down wind farm. Renew Energ. 2014;70:129–141.
  • VerHulst C, Meneveau C. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms. Phys Fluids. 2014;26(2):025113.
  • Andersen SJ, Sørensen JN, Mikkelsen RF. Turbulence and entrainment length scales in large wind farms. Philos Trans Royal Soc A Math Phys Eng Sci. 2017;375(2091):20160107.
  • Quan LH, Longhetto A, Ferrero E. The characteristics of low-speed streaks in near-neutral and unstable atmospheric boundary layer. Nuovo Cimento Della Soc Italiana Di Fisica. B, Gen Phys, Relativity Astron Math Phys Methods. 2009;124(3):325–340.
  • Lu SS, Willmarth WW. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech. 1973;60(3):481–511.
  • Cal RB, Lebrón J, Castillo L, et al. Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J Renew Sust Energ. 2010;2(1):013106.
  • Kadum HF, Knowles D, Cal RB. Quantification of preferential contribution of Reynolds shear stresses and flux of mean kinetic energy via conditional sampling in a wind turbine array. J Fluids Eng. 2019;141(2):021201.
  • Viggiano B, Dib TS, Ali N, et al. Turbulence, entrainment and low-order description of a transitional variable-density jet. J Fluid Mech. 2018;836:1009–1049.
  • Viggiano B, Sakradse S, Smith G, et al. Intermittent event evaluation through a multifractal approach for variable density jets. Chaos Solitons & Fractals. 2021;146:110799.
  • Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951;22(1):79–86.
  • Kullback S, Information theory and statistics. New York: Courier Corporation; 1997.
  • Ali N, Tutkun M, Cal RB. Turbulent boundary layer features via lagrangian coherent structures, proper orthogonal decomposition and dynamic mode decomposition, preprint arXiv:1704.04090
  • Ali N, Fuchs A, Neunaber I, et al. Multi-scale/fractal processes in the wake of a wind turbine array boundary layer. J Turbulence. 2019;20(2):93–120.
  • Ali N, Cal RB. Scale evolution, intermittency and fluctuation relations in the near-wake of a wind turbine array. Chaos, Solitons & Fractals. 2019;119:215–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.