173
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of the effect of rotation on non-premixed hydrogen combustion in developing turbulent mixing layers

ORCID Icon, &
Pages 597-622 | Received 06 Mar 2021, Accepted 11 Jun 2021, Published online: 29 Jun 2021

References

  • Im HG, Chen JH, Law CK. Ignition of hydrogen-air mixing layer in turbulent flows. Symp (Int) Combust. 1998;27(1):1047–1056.
  • Hilbert R, Thévenin D. Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust Flame. 2002;128(1):22–37.
  • Echekki T, Chen JH. Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combust Flame. 2003;134(3):169–191.
  • Doom J, Mahesh K. DNS of auto-ignition in turbulent diffusion H2/air flame. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; Orlando; 2009. p. 240.
  • Krisman A, Hawkes ER, Chen JH. Two-stage autoignition and edge flames in a high pressure turbulent jet. J Fluid Mech. 2017;824:5–41.
  • Miyauchi T, Tanahashi M. Direct numerical simulation of chemically reacting mixing layers. JSME Int J Ser B. 1993;36(2):307–312.
  • Park KH, Metcalfe RW, Hussain F. Role of coherent structures in an isothermally reacting mixing layer. Phys Fluids. 1994;6(2):885–902.
  • Li Y, Tanahashi M, Miyauchi T. Interaction between hydrogen-air diffusion flame and large-scale vortical structure in mixing layer. In: Proceedings of the 2nd Asia-Pacific Conference on Combustion; Tainan; 1999. p. 370–373.
  • Mizobuchi Y, Tachibana S, Shinio J, et al. A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc Combust Inst. 2002;29:2009–2015.
  • Mizobuchi Y, Shinjo J, Ogawa S, et al. A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc Combust Inst. 2005;30:611–619.
  • O'Brien J, Urzay J, Ihme M, et al. Subgrid-scale backscatter in reacting and inert supersonic hydrogen-air turbulent mixing layers. J Fluid Mech. 2014;743:554–584.
  • Ferrer PJM, Lehnasch G, Mura A. Compressibility and heat release effects in high-speed reactive mixing layers I: growth rates and turbulence characteristics. Combust Flame. 2017;180:284–303.
  • Ferrer PJM, Lehnasch G, Mura A. Compressibility and heat release effects in high-speed reactive mixing layers II. Structure of the stabilization zone and modeling issues relevant to turbulent combustion in supersonic flows. Combust Flame. 2017;180:304–320.
  • Yao T, Yang WH, Luo KH. Direct numerical simulation study of hydrogen/air auto-ignition in turbulent mixing layer at elevated pressures. Comput Fluids. 2018;173:59–72.
  • Qian C, Bing W, Huiqiang Z, et al. Numerical investigation of H2/air combustion instability driven by large scale vortex in supersonic mixing layers. Int J Hydrogen Energy. 2016;41(4):3171–3184.
  • Godeferd FS, Moisy F. Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results. Appl Mech Rev. 2015;67(3):Article ID 030802.
  • Lesieur M, Yanase S, Métais O. Stabilizing and destabilizing effects of a solid-body rotation on quasi-two-dimensional shear layers. Phys Fluids A. 1991;3(3):403–407.
  • Lê TH, Sagaut P, Dang-Tran K, et al. Direct numerical simulation of rotating mixing layer. In: Benzi R, editor. Advances in turbulence V. Fluid mechanics and its applications. Dordrecht: Springer; 1995. p. 298–302.
  • Lamballais E, Lesieur M. Direct numerical simulation of a turbulent channel flow across a sudden expansion: Effects of spanwise rotation. In: Proceedings of Turbulence and Shear Flow Phenomena Conferences; Ottawa; 2011.
  • Lamballais E. Direct numerical simulation of a turbulent flow in a rotating channel with a sudden expansion. J Fluid Mech. 2014;745:92–131.
  • Fukudome K, Ogami Y. Relaminarisation mechanism of the turbulent Couette flows at high Reynolds numbers under a stable system rotation. In: Proceedings of the 8th Turbulence, Heat and Mass Transfer; Sarajevo; 2015.
  • Iida O. Effects of system rotation of vortical structure in wall turbulence. J Fluids Eng. 2015;137(2):Article ID 021201.
  • Boffetta G, Mazzino A, Musacchio S. Rotating Rayleigh-Taylor turbulence. Phys Rev Fluids. 2016;1(5):Article ID 054405.
  • Riley JJ, Metcalfe RW, Orszag SA. Direct numerical simulations of chemically reacting turbulent mixing layers. Phys Fluids. 1986;29(2):406–422.
  • Poinsot T, Veynante D. Theoretical and numerical combustion. Philadelphia (PA): R. T. Edwards; 2005.
  • Wilke CR. A viscosity equation for gas mixtures. J Chem Phys. 1950;18(4):517–519.
  • Ohta T, Kajishima T, Mizobata K, et al. Influence of density fluctuation on DNS of turbulent channel flow in the presence of temperature stratification. Flow Turbul Combust. 2012;89(3):435–448.
  • Kajishima T, Ohta T, Okazaki K, et al. High-order finite-difference method for incompressible flows using collocated grid system. JSME Int J Ser B. 1998;41(4):830–839.
  • Poinsot TJ, Lele SK. Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys. 1992;101(1):104–129.
  • Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis. J Comput Phys. 2001;169(2):556–593.
  • Michalke A. On the inviscid instability of the hyperbolic–tangent velocity profile. J Fluid Mech. 1964;19(4):543–556.
  • Moser RD, Rogers MM. Mixing transition and the cascade to small scales in a plane mixing layer. Phys Fluids A. 1991;3(5):1128–1134.
  • Comte P, Lesieur M, Lamballais E. Large- and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer. Phys Fluids A. 1992;4(12):2761–2778.
  • Rogers MM, Moser RD. The three-dimensional evolution of a plane mixing layer: the Kelvin-Helmholtz rollup. J Fluid Mech. 1992;243:183–226.
  • Moser RD, Rogers MM. The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. J Fluid Mech. 1993;247:275–320.
  • Rogers MM, Moser RD. Direct simulation of a self-similar turbulent mixing layer. Phys Fluids. 1994;6(2):903–923.
  • Curran HJ, Gaffuri P, Pitz WJ, et al. A comprehensive modeling study of iso-octane oxidation. Combust Flame. 2002;129(3):253–280.
  • Yamashita H, Shimada M, Takeno T. A numerical study on flame stability at the transition point of jet diffusion flames. Symp (Int) Combust. 1996;26(1):27–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.